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Extreme rainfall events are occasional, and understanding their intensity and frequency is important for long-term planning and for public safety. 

The current study aims to investigate the stability of extreme precipitation events in different regions of Pakistan, their independence and the uniformity 

of their occurrence. A rainfall frequency analysis (RFA) was conducted based on information from 8 weather stations namely, the distribution and 
moments L of the annual maximum precipitation in Pakistan were investigated; Using goodness-of-fit criteria, the study determined the possible 

distribution of precipitation. Relatively Absolute Error (RAE) results are based on the most appropriate GUM distribution, revealed that the Sialkot, 

Multan, Faisalabad and DI Khan stations produce very low errors (0.266, 0.847, 0.075, 0.856, 1.671, 2.522, 3.659, 4.524). It was found that the most 
suitable distribution is LN distribution for Peshawar, Sibbi and Karachi Stations. The GEV distribution also performs well with small errors for various 

return periods (0.266, 0.847, 0.075, 0.856, 1.671, 2.522, 3.659, 4.524), corresponding to the return periods 2, 5, 25, 50, 100, 200, 500 and 1000 years. 

In contrast, P3 has the advantage of a return period of 10 years for all stations, as they all produce similar results for this particular return period. 
The current research provides valuable insights into estimating extreme rainfall at stations where rainfall data are available. 

Keywords: extreme rainfall; L-moments; multiple frequency analysis; Pakistan. 
 

 

INTRODUCTION 

Hydraulic and hydrological design is a main step in planning 

any water project. Any problems during the design phase can 

result in design failure, regardless of how the other steps are 

taken correctly. Hydrologist is concerned with water-related 

issues, including those associated with the quality, quantity, 

and availability of water, collectively referred to as 

hydrological events in the field of humanities. Random 

methods are frequently used to understand the bases of 

uncertainty that occur in the physical process to produce 

observed hydrological events, for example, river flow and 

precipitation evaluations depend on future or past events. 

Some statistical methods are provided to summarize and 

minimize the frequency analysis and uncertainty of 

observation data. Frequency analysis in hydrology aims to 

determine the likelihood of specific events occurring by 

estimating the quintile QT for a T return period. Here, 

Q represents the measure of events that occur at a particular 

location and time (Khan et al., 2017). Any rise in temperature, 

mainly in the light of reduced precipitation over Saudi Arabia, 

could have a significant impact on water supply and 

agriculture. Precipitation varies widely, wet areas tend to be 

wet, and dry areas become drier. These may be prerequisites 

for flash floods produced by droughts caused by heavy rains 

and insufficient rainfall. Any change in climate change can 

lead to changes in extreme weather events, such as heavy rains, 

high temperatures and cold snaps, as well as prolonged 

droughts (Almazroui et al., 2012). 

The generalize normal is an appropriate distribution for the 

maximum return period to estimate regional quantile 

estimation and for generalize extreme value distribution based 

on the overall region of the low return cycle of relative 

absolute bias and relative mean square error. For high weather 

modelling, the common statistical distributions are as follows: 

log-Pearson III, generalized extreme value (GEV), logistic 

distribution, generalized Pareto and log normal distribution. 

These distributions are evaluated using frequency techniques 

based on both Partial L-moments (PL-moments) and L-moments 

in various studies (Khan et al., 2017; Shahzadi et al., 2013; 

Zakaria et al., 2012). The study found that PL-moments are more 

suitable than L-moments for these distributions. In recent times, 

extreme weather events such as heat waves, droughts, floods, 

wildfire and sandstorm, have increased in intensity and 

frequency in several parts of the world. In fact, in South America 

there has been a decrease in the proportion of cold nights and an 

increase in warm nights (Fawad et al., 2018). 

Extreme rainfall events are occasional, and understanding their 

intensity and frequency is important for long-term planning and 

for public safety (Alam et al., 2021). However, due to limited 

records and the need infer the distribution at a location without 

observations, it is difficult to evaluate the possibility of extreme 

events (Cooley et al., 2007). Change in regional and global 

precipitation characteristics is one of the most relevant features 

of climate variation in warming regions; but there is little 

consensus on the observation and the predictable changes in 

spatial precipitation patterns. The increasing rates of extreme 

precipitation values are influenced by various factors, including 

vertical velocity outline and its change (Darnthamrongkul & 

Mozingo, 2021; Yue & Hashino, 2007; Salam et al,. 2022). It 

has been identified that the probability distribution types of 

monthly, seasonal and annual precipitation are basically the 

same. Overall, the log-Pearson type-III distribution (LP3) and 

Pearson type-III (P3) distribution are acceptable distribution 

types used to represent precipitation, such as in Japan. For 

monthly observation, P3 is the most suitable distribution, and for 

seasonal observations, LP3 is the most suitable distribution, 

while yearly the log normal (LN) distribution provides the best 
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fitted observations, with log normal (LN), generalized extreme 

value (GEV) and Pearson type-III (P3) distribution as possible 

alternatives (Koh et al., 2008). The study concludes that the 

precipitation data were optimized for regionalization, the 

region’s climate and geographical homogeneity were 

classified to estimate the probability distributions to be GEV 

distributions between the application distribution, and the 

results found that the regional analysis process could greatly 

reduce the relative bias (RBias) and relative root mean square 

error (RRMSE) in predicting design rainfall. 

Rwanda is renowned for its "thousand hills," and its rugged 

topography, in conjunction with human activities, which 

contributes to local fluctuations in precipitation patterns 

throughout the country. This in turn has led to devastating 

floods over the past few years. The country has suffered severe 

drought events, floods and land sides related to ENSO 

(El-Niño-Southern Oscillation) events. Heavy rainfall in 

1997/1998 engulfed the floor plan and caused other related 

environmental damage. Similarly, drought events in 

1999/2000 had a significant impact on the Umutara, Bugesera, 

and Mayaga areas (Wagesho & Claire, 2016). Heavy 

precipitation events caused several devastating floods in North 

America. The most destructive was the 1993 flooding in the 

upper Mississippi river, which caused an estimated $18 billion 

in damage (Salam et al., 2021). These events show that 

societies remain vulnerable to extreme weather, and it also 

raises questions about whether the frequency of precipitation 

events that produce floods has changed (Kunkel et al., 1999). 

There are many probability modes useful for continuous 

random variables, like each year maximum rainfall. In Brazil, a 

more simplified theoretical probability model is fitting. Common 

observations, such as 2 and 3 parameters Gumbel distributions, 

generalized extreme value and log-normal (Back et al., 2011; 

Cassalho et al., 2018; Senapeng & Busababodhin, 2017). 

However, continuous random variables can be represented by 

multiple probability models. The best suited to model the data 

series is selected by non-parameter testing to estimate the 

relationship between the theoretical frequency and the 

observational frequency. In the hydrological area, the fit tests, 

Anderson-Darling, chi-square and Kolmogorov-Smirnov test 

can be highlighted (Back et al., 2011; Cooley et al., 2007). 

The current study aims to investigate the stability of extreme 

precipitation events in different regions of Pakistan, their 

independence and the uniformity of their occurrence. Thus, the 

study focuses on rainfall frequency analysis (RFA) based on 

information from 8 meteorological stations: namely: (i) to 

establish the most accurate distribution and L moments of 

annual maximum rainfall in Pakistan; (ii) determine their 

possible distribution using means of goodness-of-fit; (iii) 

calculate quantiles using the selected distributions. 

MATERIALS AND METHODS 

Study area and data 

Pakistan's climate is changeable and has many characteristics. 

Among them, the most important are wind speed, temperature, 

humidity, precipitation, and altitude. Some regions of Pakistan 

are hot, dry and desert. In the study, meteorological data for 36 

years was used to measure the probable rainfall trend, and 

eight stations from the major cities were selected from the 

Pakistan Meteorological Department (PMD), Islamabad. The 

eight stations are located in Sialkot, Peshawar, Multan, 

Lahore, Faisalabad, DI Khan, Sibbi, Karachi, in the states of 

Sindh, Punjab, and Khyber Pakhtunkhwa. The annual 

maximum rainfall (AMR) data from PMD were obtained and 

is used in this study. The data of AMR, spanning a long-term 

period from 1981 to 2016 inclusive, were analysed across 

several decadal periods. 

This paper investigates the characteristics of maximum rainfall 

at all eight sites mentioned. Figure 1 shows the geographic 

location of the annual maximum precipitation. 

 

Figure 1. The studied stations on the map of Pakistan 

Table 1 lists the visual statistic for each site, among which mean, 

kurtosis, skewness, minimum, maximum rainfall, as well as the 

latitude, altitude, and longitude. The AMR series has a record 

length of 36 years. The mean rainfall exceeds 69.332 but lower 

403.262. The skewness of the Faisalabad and DI Khan stations 2, 

which can be interpreted as a significant degree of skewness. The 

skewness of the remaining stations is in the range of 0.794 

to 1.466 and can be seen as around symmetric to asymmetric. As 

can be seen from Table 1, the maximum rainfall is between 217.30 

to 839.60. The station latitude is determined by coordinates 

24°54' ... 34°0' north latitude and 67°4' ... 74°31' east longitude. 

Extreme precipitation is explained by the altitude above sea 

level, which is a major influencing factor. In this study, heights 

ranged from 4 to 359 m. Peshawar station has the highest altitude 

of 359 m, relative to all other stations, while the Sialkot and 

Lahore stations (256 m, 215 m high) are close to the Peshawar 

station in terms of height. Nevertheless, the Karachi station has 

the lowest altitude 4 m. 

Preliminary analysis of AMR series 

Before frequency analysis, annual sequences should correspond 

certain statistical conditions, such as homogeneity, 

independence and stationarity. These are common assumptions 

for frequency analysis in extreme events, such as precipitation 

extremes, extreme temperature, and floods. To assess stability, 

trends, homogeneity, and independence, the Augmented Dickey-

Fuller test (ADF-test), Mann-Kendall test (MK-test), Wald-

Wolfowitz test (WW-test) and Mann-Whitney U test (MWU-

test), were applied to the annual maximum rainfall series. 

Mann-Kendall test (MK-test) for assessing trends 

The non-parametric MK-test is typically used to study 

monotonic patterns of decreasing or increasing trends in the data 

being studied (Mann, 1945; Gilbert, 1987). It allows you to 

understand whether the trend is positive or negative. The null 

hypothesis (Ho) of the MK-test states that there is no monotonic 

trend in the AMR sequence. The tp is random variable is 

identically distributed. The MK-test statistics are as: 

ZMK =  

{
 
 

 
 

(S−1)

√var[R]
 if S > 0,

0 if   S = 0,
(S+1)

√var[R]
 if S < 0,

    (1) 

where 
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S = ∑ ∑ sign(Xe − Xf
n
e=f+1

n−1
f=1 ),          (2) 

Sign (Xe − Xf) = {

1 if (Xe − Xf)  > 0,

0 if (Xe − Xf) = 0,
if (Xe − Xf) <  0,

                 (3) 

Var(s) = 
1

18
 [n(n-1) (2n+5) – ∑ tp (tp − 1)(2tp 

g
p=1 + 5)], (4) 

where xe  and xf  are observation of time e and f individually. 

In the data set, g denotes the number of binding groups, and tp  

represents the number of data points in the Pth binding groups.  

If n > 8 the S statistic obey the normal distribution. The 

statistics S obey the normal distribution given that 

ZMK ≥ Z1−α 2⁄
, Ho is rejected. 

Estimation of stationarity by ADF-test 

The ADF-test, established by (Dickey & Fuller, 1979), is an 

augmented version of the originally created Dickey Fuller 

(DF) test and is usually applicable when it is necessary to 

assess the stationarity of a sequence. In the ADF-test, the 

variables under study are subject to an autoregressive process. 

The DF-test parametric high order correlation related to the 

original DF-test. The central difference between the two tests 

is that the DF-test contains past effects and only one 

autoregressive term. But the ADF-test applies to a larger and 

more intricate time series model. Autoregressive process of the 

Dickey Fuller test as follows: 

yt = ρyt−1 + εt, t = 1, 2, 3,… . . , T       (5) 

where ρ is the autoregressive and εt, is a random element of 

the model, which matches the characteristics of the white noise 

process. In the null hypothesis H0 , where ρ =1, the sequence 

is a unit root test, indicating that the variable studied is non-

stationary, for example I(1). In the alternative hypotheses 

H1  where |ρ| < 1, the series does not contain the unit root 

indicating that the sequence is stationary, denoted as I(0). To 

calculate the DF-test, alternative equation involves subtracting 

yt-1 from both side of equation (5): 

∆yt = βyt−1 + εt           (6) 

where β = ρ − 1.  

The DF-test statistics are equated as:  

tDF =
ρ−1

SP
^           (7) 

In equation (7), ρ is the estimated value of ρ, and SP
^  is the 

estimated standard error of ρ. Under H0 , tDF follows the DF 

distribution. The critical values of the DF distribution found 

through simulation have been established by (Dickey & Fuller, 

1976). The DF equation (5) is extended to include a linear 

trend in the equation as follows:  

yt = α0 + ρyt−1 + εt ,     (8) 

yt = α0 + α1t + ρyt−1 + εt .          (9) 

If the components of the DF models are auto correlated, 

equation (5) can be transformed as: 

yt = ρyt−1 + ∑ ri
p−1
i=1 ∆yt−i + εt .          (10) 

Referred to as the ADF-test, it is expressed as: 

yt = (ρ − 1)yt−1 + ∑ ri
p−1
i=1 ∆yt−i + εt .            (11) 

In ADF-test, selecting the appropriate choice of hypothesis (p) 

can be a challenging task. According to (Schwert & Statistics, 

2002), it recommends to set the maximum hypothesis order as 

pmax = 12
𝑇

100
. The effectiveness of the test is affected by the 

presence of autocorrelation. When p is small, the test tends to be 

less effective, and when p is large, the test may suffer from 

inefficiency. Furthermore, equation 11 can be extended to 

include a linear trend as follows: 

yt = dt + yt−1 +∑ ri
p−1
i=1 ∆yt−i + εt ,            (12) 

where,  

dt = ∑ αi
p
i=0 ti  for p = 0.1.                       (13) 

Here, dt is the portion of equation 12, and it is worth noting that 

the asymptotic distribution of the AD-test statistic is the same as 

the ADF-test statistic. 

WW-test for assessing independence 

Independence in this context means that the annual maximum 

rainfall occurrence at one site does not affect the presence or 

absence of maximum rainfall at any other site being observed; 

each site is independent of the other. Hydrological variable 

checks are usually performed on assumptions of independence, 

such as annual average, totals, maximums or minimums, 

seasonal, monthly and other intervals of time, as well as extreme 

number of non-annual samples (like partial duration sequences). 

The nonparametric The WW-test, originally created by (Wald & 

Wolfowitz, 1943), is often used to identify the instances 
of independence within a given series of values (Huang et al., 

2018; Santos et al., 2009). It is also used to examine the existence 

of the data trends. Let, x1, x2, x3, … . , xn be the observed value of 

the variable. Then, recommend the Q statistic, and subsequently 

recommend the R statistic, as shown by (Huang et al., 2018). 

Q = ∑ xi
n−1
i=1 xi+1 + x1xn         (14) 

The normal distribution of the R statistic is as follows: 

Q̅ =
(S1
2−S2)

n−1
               (15) 

Var(Q) =
(S2
2−S4)

n−1
− Q̅2 +

(S1
4−4S1

2S2+4S1S3+S2
2−2S4)

(n−1)(n−2)
       (16) 

Where Sq = nm′q and m′q are the qth moments relative to the 

sample origin, the test moments relative to the sample origin. 

The test statistic can be expressed as: 

 R =
(Q−Q̅)

√var(Q)
.              (17) 

The test statistic R is used to examine the independence of a data 

set at the significance level α. In the case when the standard 

normal variable 
𝑢α

2
, which corresponds to excess probability 

α

2
, 

is greater than the scale of statistics u, then the null hypothesis 

H0 must be accepted; this indicates the independence of the 

studied variables. 

MWU-test for homogeneity 

The MWU-test is a nonparametric test established by (Mann & 

Whitney, 1947) to determine whether two samples are drawn 

from the same population. When the assumption of normality is 

violated, the MWU-test can replace the t-test. This test is besides 

it is known as the U test and is commonly used to assess the 

assumption of consistency. To conduct this test, consider two 

independent sample sizes, denoted as p and q, with p ≤ q. Let N 

be the total number of observations, where N = p + q. Arrange 

all the samples in ascending order. The MWU-test depends on 

the minimum valve of  "U", which is determined by the 

minimum variables V and W, as explained by (Mann & 

Whitney, 1947; Mello et al., 2013): 
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V = Y − {
P(P+1)

2
},             (18) 

W = pq − V,         (19) 

U = min (V,W),            (20) 

where the primary sample size is p and the second sample size 

are q. Y is rank of the primary sample p in the united N series. 

Y = ∑ Ri
n
i=1 , where Ri is the rank series N of the primary 

sample. The number of times of the components in first sample 

in ranking follows the components in the second sample, q. W 

describes the case where the primary sample, p, follows the 

second under the null hypothesis. The test statistics is 

determined as: 

u = [
U−U̅

√Var(U)
],             (21) 

U̅ =
pq

2
,         (22) 

Var(U) = [
pq(p+q+1)

12
].    (23) 

In the presence a parallel rank, the variance formula is as 

follows: 

Var(U) = (
pq

12
) [(N + 1) − ∑

Ji
3−Ji

N(N−1)

i
i=1 ], (24) 

where Ji represents the number of observations of the sharing 

level K and are the number of parallel levels.  

Probability distributions of applicants (PD) 

In this study, maximum rainfall frequency analysis (MRFA) 

used several distributions. These distributions include two-

parameter distribution and seven multi-parameter distributions 

that are commonly used in five extreme event frequency 

analysis. These distributions include generalized extreme 

value (GEV), Log-Normal, Pearson type-III (P3), and 

log-Pearson type-III (LP3), Gumbel (GUM) distributions. 

Most of these distributions have been proposed for on-site 

rainfall, wind and temperature analysis (Fawad et al., 2018). 

Estimation parameters of PDs by the method of L-moments 

In this study, the L-moments method is used for frequency 

analysis for extreme precipitation to estimate the parameters 

of the partial discharge. This technique, proposed by 

(Hosking & Wallis, 1997), is based on a linear combination of 

sequential statistics that have been ranked in descending or 

ascending direction (Huang et al., 2018). The L-moments are 

more consistent because they are less sensitive to outliers, 

making them suitable when the sample size is small. They have 

also been related to the maximum likelihood and method 

of moments approaches in statistical estimation (Alam et al., 

2016). The L-moment is also expressed by probability 

weighed moments (PWM): 

βr = E[X{F(X)}
R],          (25) 

where r = 1, 2, 3, …. 

The L-moments λr+1 can be found as a linear combination 

probability weighted moment: 

λr+1 = ∑ Pr,k
∗ βr

r
k=0 ,          (26) 

Pr,k
∗ = (−1)r−k(r

k
)(r+k

k
) =

(−1)r−k(r+k)!

(k!)2(r−k)!
.         (27) 

The following equations can determine the first four overall L-

moments (λ1, λ2, λ3, λ4) involving position, ratio, L kurtosis 

and L skewness, separately: 

λ1, = β0,          (28) 

λ2 = 2β1 − β0,              (29) 

λ3 = 6β2 − 6β1 + β0,                 (30)  

λ4 = 20β3 − 30β2 + 12β1 − β0,          (31) 

L-CV: τ =
λ3

λ2
,          (32) 

L-skewness: τ3 =
λ3

λ2
,               (33) 

L-kurtosis: τ4 =
λ4

λ2
             (34) 

Repeatedly use br can be unbiased estimator of βr which as: 

br = n
−1∑

(j−1)(j−2)….(j−r)

(n−1)(n−2)….(n−r)
n
j=r+1 xj:n,            (35) 

To determine the relation between the first four sample 

L-moments with probability weighted moments, you should use 

the following formulas: 

l1 = b0,        (36) 

l2 = 2b1 − b0,           (37) 

l3 = 6b2−6b1 + b0             (38) 

l4 = 20b3−30b2+12b1 − b0.                 (39) 

The sample L-moments ratios are:  

t =
l2

l1
,                     (40) 

t3 =
l3

l2
,                     (41) 

t4 =
l4

l2
, `                   (42) 

where t is the quantile L-moments coefficient of variance t3 and 

t4, the L-kurtosis and L-skewness is useful for relating 

probability distributions respectively. 

Goodness of fit tests 

The specific PD depends on a number of factors, among which 

comparison of PD, the availability of maximum rainfall data, and 

the method of parameter estimation. In the current study, the 

Kolmogorov-Simonov test, the Anderson-Darling test, and 

chi-square test to variability criteria were applied. These tests, 

namely AD, KS and chi-square test statistics, help to describe 

how well the data conforms to a given distribution. Goodness of 

fit describes the difference between the theoretical values and 

the actual data sequence calculated from the tested distribution. 

In addition, to assess the fitness visually, various techniques 

were employed, including a quantile-quantile (Q-Q) plot, 

L-moment ratio plot, a PP plot and extreme value plots. The 

advantage of the above graphical test and fit test have been 

applied to maximum rainfall data (Yuan et al., 2018; Kunz et al., 

2010; Lawan et al., 2015; Khan et al., 2021). In the context of 

climate change, goodness of fit is consistently used to select the 

best fit distribution for modelling. 

Kolmogorov-Smirnov (KS) test 

An empirical distribution function (EDF)-based KS test is used 

to determine if a sample is from hypothetical continuous 

distribution (Khan et al., 2022). Suppose a random sample 

x1, x2 ,  x3, … . , xn from a distribution, which EDF is give as:  

Fn(x) =
1

n
[number of observation ≤ x].         (43) 

The KS test depends on the maximum vertical distance between 

the EDF and the theoretical PD. The test statistics are given as: 
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D = max1≤i≤n, [F(xi) − 
i−1

n
,
i

n
− F(xi)].        (44) 

In expression (44), F(xi) is the cumulative distribution 

function, xiis the ith order, while n is the sample size.  

Test of Anderson-Darling (AD) 

The test of Anderson-Darling (AD) evaluates the goodness of 

fit of a distribution. The AD test assigns a more significance to 

the tail of the distribution, since this is the main property of 

modelling extreme phenomena (Huang et al., 2018). The 

AD test statistic A2can be expressed as: 

A2 = −n −
1

n
∑(2i − 1) ×

n

i=1

 

× [ln F(xi) + ln(1 − F(Xn−i+1))],                 (45) 

where A2 corresponds to the test result, X is the variable, F(Xi) 
is the distribution function, and n is the sample size. 

RESULTS AND DISCUSSION 

The initial step is to check the homogeneity, independence, 

stationarity and frequency analysis of AMR series. Stationarity 

indicates that, in addition to random changes, the annual 

maximum rainfall series over time is unchanged. Non-stationary 

characteristics are characterized by trends, jumps and 

oscillations. Trends in climatic conditions may be due to regular 

changes, while the long-term climate fluctuations may follow 

cyclical patterns. Jumps are mainly associated with changes in 

flood frequency, often due to abrupt variations in river systems. 

Independence means that each observation in the sequence is not 

influenced by any other observations. In practice, the degree of 

dependence can vary depending on the spacing between 

consecutive elements in the sequence. Typically, the dependence 

is weaker between annual maximum values, while the 

dependence between consecutive values is often stronger. 

Homogeneity, in this context, signifies that all observations in 

the data originate from the same population. In the case of 

extreme events, floods, rainfall and snowmelt, if heterogeneity 

is too high, it can be challenging to interpret the trends. Although 

in this particular case, it can be accepted as uniform depending 

on the test results obtained. At the same time, using annual 

series, heterogeneity is easier to detect. To identify and assess 

heterogeneity, tests such as the ADF-test, MK-test, the 

homogeneity Mann-Whitney U and the independent WW-test 

were performed. All workstations in the annual maximum 

precipitation series of the above tests were passed at the level of 

5 % significance. The results of the ADF-test, MK-test results 

uniformity test, MWU-test and WW-test are presented in 

Table 2. In cases where the assumptions about the AMRF series 

are not seen, more complicated statistical methods that consider 

observed data and their correlation change over time must be 

employed. Additionally, when investigating monotonic trends, 

the results of the MK-test are consistent with the patterns 

observed in time series plots. Reference (Durrans & Kirby, 

2004) applied a consistent methodology to examine the 

modulation in the probability of extremes in rainfall and 

temperature, and they identified statistically significant long-

term increases in extreme maximum temperatures but with 

marked regional and seasonal variations. To analyse these 

changes, they used Wilcoxon test, and the results were 

summarized using boxplots for four AEP: 50 %, 10 %, 5 % and 

1 %. They considered stationary and non-stationary GEV 

distributions in the analysis. 

Table 1. Data analysis for the studied stations 

Variable SD sKENESS Kurtosis Mean Max 

rainfall 

Latitude Longitude Altitude 

Sialkot  157.127 0.794 3.097 403.262 839.60 32°30' 74°31' 256 m 

Peshawar  69.962 1.466 6.563 147.000 409.00 34°0' 71°35' 359 m 

Multan 46.065 1.081 3.772 90.389 217.30 30°11' 71°28' 123 m 

Lahore  109.824 1.359 5.472 259.000 640.00 31°33' 74°19' 215 m 

Faisalabad 69.384 2.224 9.516 144.881 435.300 31°25' 73°44' 184 m 

DI Khan 64.040 2.018 9.004 111.508 376.00 31°49' 70°54' 164 m 

Sibbi 36.119 0.824 4.299 69.332 188.10 29°09' 68°29' 130 m 

Karachi 76.094 0.812 2.705 98.586 270.40 24°54' 67°4' 4 m 

 

Table 2. Testing the assumption of independence, stationarity and homogeneity of annual rainfall sequence of eight stations 

Station MK-test Spearman test WW-test MWU-test 

T Stat P-value T Stat P-value T State P-value T State P-value 

Sialkot  -0.0601 0.610 -0.766 0.221 0.808 0.209 -2.187 0.014 

Peshawar  0.0376 0.753 0.358 0.361 1.342 0,089 -0.091 0.463 

Multan  0.045 0.704 0.485 0.313 0.542 0.293 -0.121 0.451 

Lahore  0.048 0.6851 0.466 0.320 1.727 0.042 -0.182 0.427 

Faisalabad 0.137 0.2391 1.221 0.110 1.278 0.100 -1.245 0.106 

DI Khan 0.114 0.3266 1.019 0.153 -0.373 0.354 -1.033 0.150 

Sibbi  0.183 0.1135 1.615 0.053 0.547 0.292 -1.154 0.124 

Karachi  0 1 -0.019 0.492 0.590 0.277 -0.151 0.439 
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Figure 2. Time series charts for the stations under study 

Probability distribution function (PDF) 

The annual maximum rainfall for the selected stations is 

analysed using PDFs. Figure 3 shows the annual maximum 

rainfall series and probability distribution analysis for the 

representative stations Sialkot, Peshawar, Multan, Lahore, 

Faisalabad, DI Khan, Sibbi, and Karachi airport. The results 

show that the probability distribution of these PDFs varies 

from one station to another. 

Probability distributions (PDs) selection 

Modelling of extreme rainfall for design of rainfall farms. To 

accurately determine the PD of maximum precipitation is 

important for measuring climate change in a region. Primarily 

considered are five PDs in the study, such as GEV, LN, LP3, 

GUM (Max) distribution. The goodness of fit was used to 

evaluate these PD, for example Kolmogorov-Simonov test, 

Anderson-Darling test and chi-square test. The results of 

statistical data for best fit distribution based on KS, AD and 

chi-square test are recorded in Table 4 to Table 6. The best fit 

distribution for each station is based on the goodness of fit test 

between all PDs measured in the study and the distribution 

selected at the 5 % significance level according to the AD and 

KS tests. The main result of each PD is given in Table 4 to 

Table 6. L skewness, L-coefficient of variation and L kurtosis 

in Table 3 gives the calculation results for all sites. Table 3 

shows that the Sibbi station has lower L kurtosis than other 

sites, while Sialkot and Multan stations have moderate, and the 

others are higher kurtosis. The skewness of the Sialkot, 

Peshawar and Sibbi stations is moderate, and the others exhibit 

high skewness. The remaining stations display lower L-moments 

skewness and kurtosis. Overall, all stations show lower L-CV. 

The results of the AD test indicate that in Peshawar and Lahore, 

LP3 is the most suitable distribution. For Karachi and Sibbi 

stations, LN is the most suitable distribution. The GUM 

distribution is found to be the most suitable for others sites, 

namely Sialkot, Multan, Lahore, Faisalabad, DI Khan, see 

Table 4. According to the KS test results, GUM (Max) is found 

to the best-fitted distribution for five stations, namely Sialkot, 

Multan, Lahore, Faisalabad and DI Khan. Meanwhile, LN is 

suitable distribution for Peshawar, Sibbi and Karachi stations as 

shown in Table 5. Similarly, the chi-square test is used to find 

the most appropriate PDF from the selected stations. Here we 

calculate and find the most suitable PDF for the selected stations, 

and the results are shown in Table 6. 

The results show that the best-suited distribution of the eight 

selected stations is the LN distribution, which includes 

Peshawar, Faisalabad, DI Khan, Karachi. However, the 

generalize extreme value (GEV) distribution is found to be the 

most fitting for Multan, Lahore and Sibbi, while for Sialkot, 

GUM (Max) distribution is the best fit. Therefore, we conclude 

that the LN, GUM (Max) and GEV are the best PDF for chi-

square, used to predict extreme precipitation.
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Figure 3. PDF of annual maximum temperature (AMT) for eight stations  
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Table 3 Sample L-Ratios for different stations  

Location L CV L-SKEWNESS L-KURTOSIS 

Sialkot  0.2191 0.1800391  0.1024245 

Peshawar 0.2521 0.1860525  0.2076851 

Multan  0.2780 0.232522 0.1658959 

Lahore 0.2250 0.2251192  0.2246678 

Faisalabad 0.2342 0.3220915  0.2805230 

DI Khan 0.2903 0.2545115  0.2115040 

Sibbi 0.2888 0.107069  0.089558 

Karachi 0.2521 0.211365 0.116301 

 

Table 4 Goodness of fit augmented Dickey-Fuller (AD) test 

Locations AD test for goodness of fit Best fit PDF 

GEV LN LP3 GUM (max)  

Sialkot 0.16158 0.18408 0.16336 0.19884 GUM 

Peshawar 0.18509 0.20753 0.21518 0.19478 LP3 

Mulan 0.19083 0.19466 0.18781 0.25958 GUM 

Lahore 0.21372 0.22118 0.22968 0.25718 GUM 

Faisalabad 0.20413 0.35649 0.22786 0.81658 GUM 

DI Khan 0.20452 0.21365 0.21821 0.43271 GUM 

Sibbi 0.40534 0.88048 0.9204 0.5088 LN 

Karachi 0.24778 0.4288  0.33533 LN 

 

Table 5 Goodness of fit Kolmogorov-Simonov (KS) test 

Locations Ks test Best fit PDF 

GEV LN LP3 GUM (max) 

Sialkot 0.07434 0.07782 0.07677 0.0797 GUM 

Peshawar A 0.08321 0.0864 0.08418 0.07732 LN 

Multan 0.07241 0.07261 0.07539 0.09811 GUM 

Lahore 0.0912 0.08757 0.09068 0.0931 GUM 

Faisalabad 0.08582 0.1039 0.07985 0.13032 GUM 

DI Khan 0.08311 0.07943 0.08187 0.10393 GUM 

Sibbi 0.08649 0.12716 0.08347 0.10583 LN 

Karachi  0.0601 0.08104  0.07393 LN 

 

Table 6. Goodness of fit chi-square test 

Stations Chi-square test Best fit PDF 

GEV LN LP3 GUM (max) 

Sialkot 0.0704 0.50577 0.16731 0.5433 GUM 

Peshawar 3.417 2.0654 3.3963 3.4471 LN 

Mulan 0.16469 0.21794 0.20552 0.39477 GEV 

Lahore 0.19422 1.1696 1.177 0.91276 GEV 

Faisalabad 3.5969 1.0149 3.1896 4.4716 LN 

DI Khan 0.25369 0.19945 0.20422 1.7277 LN 

Sibbi 1.3688 2.2866 2.110 2.5952 GEV 

Karachi 1.9151 1.1799 1.9332 1.4956 LN 

 

The results of the KS test indicate that GUM (Max) 
distribution is THE most appropriate for five stations, while 
the LN distribution is the best for the remaining three stations. 
However, for the AD test, the GUM (max) distribution is 
found to be the best fitted distribution for four stations, while 
the LP3 and LN distributions are the best for two stations each. 
In the chi-square test, GEV distribution is the best fit for three 
stations, LN distribution for four and GUM (Max) distribution 

for one station. All selection periods fit the GEV distribution and 
estimate the indicator. The likelihood ratio test shows that the 
best model involves a linear increase in the location parameter, 
while the indicators shape and amount remain constant. Model 
diagnosis including quantile plots, probability plots and density 
plot showed a good degree of fit. The GOF test, such as AD and 
KS tests, shows that modelling approach yields nearly identical 
fitting results. Reference (Rahman et al., 2013) observed two 
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parameter distribution performance, particularly in the case 
of analysing Gamma and LN2 probability distribution function. 
A reference (Beskow et al., 2015) suggested that for maximum 
rainfall series, the number of adjusted series for GLO 
distribution of EV1 is the least, which is considered to be the 
most suitable PDF for only one sequence. Although the 
presentation in the Rio Grande was not satisfactory, some 
authors informed permissible GLO distribution indicators in 
regional studies (Beskow et al., 2015; Khan et al., 2021), 
because GEV has made appropriate adjustments to more than 
96 % of the series. In this study, compared with other PDFs, 
GEV offers better modifications for shorter sequences and better 
modification for longer average sequences. This feature is very 
important for areas where hydrological observation often lacks 
an extended historical sequence. Reference (Ng et al., 2020) 
focused on a suitable probability distribution to examine the 
annual maximum atmospheric falls in hot regions of the 
Malaysian Peninsular. They explored the fitting of Gumbel, 
Gamma, log-Pearson type-III and GEV distributions to describe 
the maximum annual atmospheric falls in the river basin. They 
evaluated the performance of these distributions by using GOF 
tests and found that the GEV distribution is the best fitting 
distribution to characterize the precipitation sequence, because 

it has the advantages of high flexibility and efficiency. 

Analysis of maximum annual precipitation shows that a 
subpopulation is present in the observations, and therefore 
indicates that, apparently due to high water vapor content, the 
weather mechanism that causes heavy rainfall has changed, 
temperature variation between continuous and incoming air, 
duration of low pressure in a given area, local conditions and 
thermodynamic balance of atmospheric conditions (Młyński et al., 
2018). In another work, (Villarini, 2012) proposed that log 
Gamma and Weibull distribution are the most suitable 
distributions for central Poland. Another study by 
(Wdowikowski et al., 2016) proved that the Generalized 

Pareto and exponential distributions are the best method to 
estimate P maxp% in the Odra Basin. Furthermore, Yuan et al. 
(2018) believes that the GEV function is the best distribution for 
estimation of the highest annual average precipitation. Due to the 
high mid-tall, there is a specific probability of excess in central 
European countries. In spite of such studies, it should be noted that 
the form of the probability distribution, especially its indicators, is 
tightly interconnected to the meteorological, physical and 
geographic characteristics of the area that affect atmospheric fall. 
The means that the determination of the precise probability of 

exceeding maximum rainfall is highly dependent on these factors. 

Relative absolute error  

Extreme precipitation's prediction plays an important role in 
turbine design, society and engineering design. A reference 
(Beskow et al., 2015) emphasizes the importance of examining 
the effect of PD selection on estimating the number of countless 
related to a predefined return period. The calculation of the 
Relatively Absolute Error (RAE) involves estimating the design 
annual maximum rainfall using an acceptable fitting probability 
distribution (PD) and comparing it to the design maximum 
rainfall estimated by the most suitable PD. The RAE has been 
determined with application the following equation as suggested 
in works (Beskow et al., 2015; Cassalho et al., 2018): 

RAE = |
A−B

B
| × 100, 

where A represents the quantile estimated using a specific PD, B 
represents the quantile estimations obtained from the best-suited 

fitted PD.  

Table 7 summarizes the relative absolute error related with each 
station using the most acceptable distribution based on the AD 
and KS tests, as well as chi-square criteria. This emphasizes the 

importance of considering multiple distributions in the analysis. 

 

Table 7. Relative Absolute Error of quantile estimates (%) 

Stations Best fit Acceptable 

fit 

Return period 

2 5 10 25 50 100 200 500 1000 

Sialkot GUM GEV 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

LN 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

PE3 0.266 0.847 0.642 0.075 0.856 1.671 2.522 3.659 4.524 

Peshawar LN GUM 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

PE3 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

GEV 0.266 0.847 0.622 0.075 0.856 1.671 2.522 3.659 4.524 

Multan GUM GEV 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

LN 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

PE3 0.266 0.847 0.422 0.075 0.856 1.671 2.522 3.659 4.524 

Lahore GEV GUM 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

LN 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

PE3 0.266 0.847 0.622 0.075 0.856 1.671 2.522 3.659 4.524 

Faisalabad GUM GEV 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

LN 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

PE3 0.266 0.847 0.622 0.075 0.856 1.671 2.522 3.659 4.524 

DI Khan GUM GEV 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

LN 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

PE3 0.266 0.847 0.642 0.075 0.856 1.671 2.522 3.659 4.524 

Sibbi LN GUM 0.569 1.760 1.333 0.075 1.523 3.178 4.973 7.401 9.270 

PE3 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

GEV 0.267 0.847 0.642 0.075 0.856 1.671 2.522 3.659 4.524 

Karachi LN GUM 0.569 1.760 1.333 0.075 1.523 3.178 4.972 7.401 9.270 

PE3 3.856 1.238 0.494 2.478 3.871 5.232 6.653 8.511 9.935 

GEV 0.266 0.847 0.642 0.075 0.856 1.671 2.522 3.659 4.524 
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Table 7 shows the quantiles estimated by the PD that is not 

properly fitted compared to the more satisfactory quantile 

estimates obtained from the probability distributions. It is 

important to analyse the different distributions, because even 

if some of these distributions pass the goodness-of-fit tests, 

there are still some significant differences in quantile 

estimation. These differences can have a significant impact on 

planners, policy makers, and decision makers. As described in 

Table 7, some distributions have the smallest RAE for each 

station, indicating that they provide estimates that are closer to 

the actual values. 

RAE results are based on the most appropriate GUM 

distribution, revealed that the Sialkot, Multan, Faisalabad and 

DI Khan stations produce very low errors (0.266, 0.847, 0.075, 

0.856, 1.671, 2.522, 3.659, 4.524) which is used for P3 

distributions among each of the other distributions for all 

return periods. While LN has the advantage of a return period 

of  10 years, with an RAE of 0.494. However, from table it is 

evident that the most suitable distribution is LN distribution 

for Peshawar, Sibbi and Karachi Stations. The GEV 

distribution also performs well with small errors for various 

return periods (0.266, 0.847, 0.075, 0.856, 1.671, 2.522, 3.659, 

4.524), corresponding to the return periods 2, 5, 25, 50, 100, 200, 

500 and 1000 years. In contrast, P3 has the advantage of a return 

period of 10 years for all stations, as they all produce similar 

results for this particular return period. Moreover, for the Lahore 

station as indicated in Table 7, the P3 distribution yields a small 

margin of error for return periods ranging from 2 years to 

1000 years (RAE values: 0.266, 0.847, 0.075, 0.856, 1.671, 

2.522, 3.659, 4.524), while LN has a 10-year return period. 

CONCLUSION  

Initially, the homogeneity, independence and stationary of the 

eight stations were tested. For this purpose, time series 

diagrams, Mann-Whitney U test, Wald-Wolfowitz test and 

Dickey-Fuller test were applied. Eight stations successfully 

completed these tests, allowing further analysis of the AMR 

series at these eight sites. 

The L-moments method was applied for parameter evaluation 

of probability distribution, and various tests and plots, 

including the AD test, KS test, chi-square test, Q-Q plots, 

L scale chart, P-P plots and RAE, were utilized to find the best 

appropriate distribution between all PDs. The goodness-of-fit 

indicates that GUM (Max), LN, GEV, and P3 are appropriate 

distributions for different frequency analysis stations.  

The KS and AD test results are consistent with the graphical 

L-ratio graph outcomes. 

The chi-square test was also employed, indicating that LP3 

distribution is appropriate for most stations. 

Smaller errors in certain distributions indicate that they provide 

close and accurate estimates, making them the preferred choices 

for estimating extreme rainfall quantiles. 

For engineers looking at renewable energy, structural design, 

and climatology, the RAE and quantile estimates are important 

for preparing precipitation-based energy development. This 

result is very useful for the design of rainfall farms, and 

agricultural applications. 

The current research provides valuable insights into estimating 

extreme rainfall at stations where rainfall data are available. 

In the future, the focus will expand to encompass the entire 

nation, considering all stations for both maximum and minimum 

rainfall in Pakistan. The aim will be to determine the most 

suitable probability distribution for site-specific extreme rainfall 

analysis across the country. 
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