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Background: Today, scientists are exploring the best technology to improve air quality for human health, which is especially important in conditions 
of actively developing technogenic activity and following emergencies. Planning and development of towns and regions should include adequate gas 

cleaning to minimize the amount of CO in the atmosphere, as this gas is responsible for the ozone layer's depletion and other atmospheric negative 

impacts. Objectives: The current study aims to explore some of the features and the characteristics of such nanoadsorbents for the CO adsorption from 
atmospheric air, with an emphasis on their potential prospects. Methods: A review of studies based on publications in peer-reviewed scientific journals 

was conducted. Mostly the most recent publications and the most cited ones were taken into account. Results: It has been established that among several 

phases (δ-, η-, θ-, and γ-) of alumina, γ-alumina that is recognized as transition alumina is the suitable choice for capturing CO gas because it has a large 
surface area, an excellent catalytic activity, pore-volume. The roll-coating method leads composite films to have special properties, such as a high 

mechanical property and surface area, simplicity to produce, and needless to pre-treated before use. It was found that the maximum adsorption efficiency 

for different alumina-doped adsorbents is about 94 – 98%. Conclusion: The roller coating method for the production of composite films has proven to 
be a simple, cheap and reliable method for producing an effective nanoadsorbent. Alumina-doped adsorbents deserve serious attention for further 

development, since they are quite capable of competing in efficiency, ease of manufacture and cost with commercial adsorbents available on the market. 
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INTRODUCTION 

Carbon monoxide (CO), which is an odourless, colourless, and 

flavourless gas, is responsible for global warming (Cleland, 

2013). CO gas can be released by natural ways like bushfires, 

volcanoes (Wang et al., 2023) and also by human activities, that 

includes fossil fuel use, activities of industrial enterprises, 

vehicle exhaust and even cigarette smoke (Yeom et al., 2018; 

Chen et al., 2018). The release of CO possesses severe impacts 

on the environment, namely ozone depletion, climate change, 

global warming, and acid rain (Bobbitt et al., 2017). Besides, it 

also causes dizziness, asthma, and death arise from CO emission 

in the atmosphere with high concentrations (Mozaffari et al., 

2020). 

Consequently, the evolution of effective techniques to adsorb 

CO toxic gas has attracted significant interest. Investigations 

have been conducted on CO removal by metal-organic 

frameworks (Yeom et al., 2018; Glover et al., 2011), 

mesoporous silica (Hanif et al., 2015), and mesoporous alumina 

(Yeom et al., 2018) because of their particular properties, 

namely large surface area, porous form, pore size distribution, 

and wall thickness (Yeom et al., 2018; Hung & Bai, 2008). 

Furthermore, their uniform porosity, wide joint pores, and the 

large volume of the pore are noticeable to capture molecules of 

gas selectively (Yeom et al., 2018; Yin et al., 2007). Considering 

some scientific publications like (Thote et al., 2012; Walcarius 

& Mercier, 2010), mesoporous alumina has been recently the 

centre of attention among metal-organic frameworks as well as 

mesoporous silica due to its effectiveness in gas removal. 

Notwithstanding its prominent properties, the progress of 

adsorption technology for CO capture is of great interest and 

more systematic study and optimization is required (please add 

reference, you can keep Mozaffari et al 2020, Yuliusman et al 

2020). 

Metal-organic frameworks are also well-known in the gas 

adsorption process. Munusamy et al. (2012) reported the 

capability of MIL-101(Cr) to capture CO gas. MIL-101(Cr) is 

the metal organic framework with a large surface area, large pore 

volume, and harmonic pore size, which can capture a wide range 

of toxic gases, namely carbon monoxide, carbon dioxide, methane, 

and so on (Munusamy et al., 2012; Chowdhury et al., 2009). Given 

the adsorption capacity of CO gas obtained by Munusamy et al. 

(2012), adsorption capacity had a decreasing trend with increasing 

temperature, in which the adsorption capacity at 288 k, 303 k, and 

313 k was 1.13, 1.00, and 0.89 mmol g-1, respectively. 

Activated carbon (AC) is another known material to capture CO 

gas because of its high adsorption capacity. Moreover, ACs are 

cost effective, flexible, and ease of use compared to other 

counterparts of CO gas adsorbents. Yuliusman et al. (2020) 

studied the ability of activated carbon with different lengths of the 

tube to capture CO gas, in which CO adsorption percentage with 

a tube length of 3 cm and 4 cm was 88.87% and 92.47%. 

The well-known potential catalysts are noble metal-metal oxide or 

metal oxide-metal oxide for oxidation of carbon monoxide. 

However, they have had less attraction in gas adsorption in spite 

of their powerful performance because of their expensiveness and 

low accessibility in the market (Cai et al., 2021). 

Considering the significant interest of scientists in the design and 

generation of effective aluminium-based nanoadsorbents, the 

purpose of this study is to explore some of the features and the 

characteristics of such nanoadsorbents for the CO adsorption from 

atmospheric air, with an emphasis on their potential prospects. 

MATERIALS AND METHODS 

A review of research resources and research techniques was 

conducted based on publications in peer-reviewed scientific 

journals. Since the current study is a mini-review, the most recent 

and most cited publications were predominantly taken into 

account.  

During the review, it was observed that researchers were 

interested in developing a significant number of adsorbents to 

reduce the concentration of CO gas in the atmosphere. In many 
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research studies, both experimental and theoretical aspects 

were considered to explore the adsorption capability of every 

adsorbent. 

RESULTS AND DISCUSSIONS 

Focus on the adsorbent composition 

Liquid adsorbents for carbon monoxide have a smaller 

capacity, require special equipment for the absorption process 

and special methods for purifying the gas from absorbent 

vapours. Therefore, from a technological point of view, 

processes of absorption of carbon monoxide by solid 

substances are more practical. The most commonly used 

materials for such solids are those containing transition metal 

compounds (Lopez et al., 2021; Muñoz-Senmache et al., 2020). 

This allows carbon monoxide molecules to bind to the surface 

of the adsorbent. 

The prospects of such adsorbents are limited due to low 

selectivity to carbon monoxide, which is accompanied by a 

significant decrease in their effectiveness in the presence of 

other compounds in the atmosphere, such as hydrogen 

sulphide, nitrogen oxides, and organic compounds. Due to 

contamination of adsorbents in this way, they are almost not 

regenerated. The use of transition metal compounds also 

increases the cost of gas purification and leads to the 

emergence of a large amount of waste with low concentrations 

of toxic elements, which are difficult to further dispose of. 

Various researchers are discovering that increased CO 

adsorption efficiency can be achieved by using materials with 

a special zeolite structure. Although this raises problems with 

the location of active adsorption centres in the structure of 

zeolites. With an increase in the number of active compounds, 

the influence of the microporous structure on adsorption 

decreases, and with an increase in the amount of cellular 

structure, the overall adsorption activity of the material 

decreases. This problem can be partially solved by using 

various structural components as an additive to the adsorbent 

material (Thote et al., 2012; Lehman & Larsen, 2014).  

The use of a mixture of zeolite and active carbon as the main 

component of the adsorbent demonstrates good performance 

(Bastos-Neto et al., 2011) due to the absence of alloying 

additives. Moreover, the high adsorption capacity is due to the 

fact that active carbon particles are both a carrier of the active 

substance and part of the structure of the adsorbent. 

It was found that alumina-based materials can be considered 

advantageous adsorbents due to their uniform porous form, 

pore size, and interconnected channels inside their structure 

(Rengaraj et al., 2007). Among several phases (δ-, η-, θ-, and 

γ-) of alumina, γ-alumina that is recognized as transition 

alumina is the top choice for capturing CO gas because it has 

a large surface area, an excellent catalytic activity, pore-

volume (Macêdo et al., 2007; Busca et al., 2014; Peng et al., 

2018). Besides, alumina possesses high stability and durability 

which are its noticeable properties (Chen et al., 2011). The 

effect of type of electrolyte on the size and regularity of pores 

by anodization was also reported (Keshavarz et al., 2013). 

However, adding a small amount of a dopant enhances surface 

area as well as surface defect density (Zhou et al., 2018), which 

results in the improvement of the performance of adsorption 

(Chen et al., 2018).  

Another potential adsorbent that attracted research interest is 

tin (IV) oxide due to its large bandgap, durability, high 

sensitivity, inexpensiveness, and high adsorption ability to 

capture CO gas (Kolmakov et al., 2003; Durrani, 2006; Chen et 

al., 2018). In addition, Canto et al. (2012) and Wiltner et al. 

(2008) have reported that transition-metal dopants, like nickel, 

increase the adsorption process of CO gas. 

Zeolite is a crystalline aluminosilicate possessing uniform size, 

controllable pore size, large surface area, and large level of 

selectivity (Ackley et al., 2003; Wang et al., 2011; Bastos- 

Neto et al., 2011, Khalegh et al., 2020) which leads to being 

known as CO adsorbent.  

The promise of adsorbents with this composition lies in their 

high adsorption capacity and the absence of alloying additives. 

However, at the same time, due to the significant difference in 

the physical and chemical properties of the components of such 

a composite material, this composite does not have very high 

mechanical properties. 

The efficiency of adsorbents can be increased by using materials 

with a special zeolite structure. However, their progressive use 

is hampered by difficulties associated with the location of active 

adsorption sites in the structure of zeolites. With an increase in 

the amount of active compounds, the influence of the 

microporous structure on adsorption decreases, and with an 

increase in the amount of cellular structure, the overall 

adsorption activity of the material decreases. 

The use of different structural components partially solves this 

problem by adding another structural component (Martens et al., 

2014; Lehman & Larsen, 2014). 

Therefore, Mozaffari et al. (2020) have suggested that alumina-

doped with zeolite, or tin oxide, or nickel may enhance CO 

adsorption capacity. These problems can be overcome in order 

to create a progressive adsorbent by mixing zeolite and gamma 

aluminium oxide powders. A particularly positive effect can be 

achieved with a mass ratio of components of 0.7:1 to 1.4:1 for 

zeolite powder with a pore diameter of 15 – 25 nm (with 

particles of 60 – 100 nm) and gamma aluminium oxide powder 

with a pore diameter of 6 – 13 nm (with particles 15 – 45 nm) 

respectively. 

These advantages can be justified as follows: 

– uniform distribution of zeolite and aluminium oxide particles 

in the final material is achieved due to the use of particles of the 

same size; 

– the highest specific adsorption capacity relative to carbon 

monoxide molecules is achieved due to the appropriate particle 

pore size; 

– the simultaneous use of zeolite and aluminium oxide allows 

you to combine the high adsorption capacity of zeolite with 

selectivity towards carbon monoxide and the stability and 

mechanical properties of aluminium oxide; 

– the environmental friendliness of the adsorbent increases and 

there are no alloying additives in the form of transition metal 

compounds, which makes such an adsorbent more 

environmentally friendly. Sixth, the use of these components 

makes the adsorbent more resistant to poisoning by other gases 

and easier to regenerate. 

Experimental studies by Mozaffari et al. (2020) have shown that 

the adsorption capacity is determined by the ratio of the 

proposed components. More zeolite results in a larger total 

adsorption capacity, and more alumina results in stronger 

adsorption of carbon monoxide and therefore reduces the 

minimum equilibrium concentration of carbon monoxide in the 

gas. 

When the zeolite: aluminium oxide ratio decreases to less than 

0.7:1, the equilibrium degree of carbon monoxide in the mixture 

decreases to 1 mg/L, but at the same time the adsorption capacity 
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is reduced by almost half. Conversely, when the zeolite: 

aluminium oxide ratio increases to more than 1.4:1, the 

adsorption capacity almost doubles, but at the same time the 

equilibrium degree of carbon monoxide in the mixture 

increases to 15 mg/L. Therefore, the optimal values of this 

parameter are (0.7 – 1.4):1. 

Focus on adsorbent technology 

The review shows that adsorption processes are most simple 

on solid materials. Granular materials or composite materials 

with an active layer applied to an inactive material are most 

often used as such materials. The future prospects for the use 

of granular sorbents are limited by their small specific surface 

area and high hydraulic resistance. Moreover, hydraulic 

resistance increases with increasing specific surface area. The 

problem of increasing hydraulic resistance can be solved by 

synthesizing composite film sorbents on some carrier. The 

transition metal thin films have a wide range of applications 

for various purposes (MacManus-Driscoll et al., 2020; 

Allag et al., 2024). The main advanced advantages of thin film 

technologies are the ease of preparation and the use of flexible 

substrates (Osuwa et al., 2009). The most promising 

adsorbents are composite materials, for which 

aluminosilicates, zeolites, aluminium oxide or mixtures 

thereof are used as carriers, and transition metal compounds 

are used as applied active substances (Hjiri et al., 2014; 

Poolakkandy & Menamparambath, 2020). But at the same 

time, problems arise with the adhesion of the active layer to 

the carrier, its strength, and differences in the physical 

properties of the carrier (MacManus-Driscoll et al., 2020), 

which can be accompanied by peeling and erosion in the flow 

of liquid and gas. By using chemical and electrochemical 

methods to form an active adsorption layer on stronger and 

more resilient materials, the likelihood of delamination and 

erosion can be significantly reduced. However, the problem of 

adhesion of the active layer to the carrier still remains. 

Based on the analysis of published literature sources in this 

field of knowledge, alumina-doped zeolite, alumina doped-tin 

(IV) oxide, alumina doped-nickel, alumina doped-nickel-tin 

(IV) oxide composite films were prepared by the roll-coating 

method (Mozaffari et al., 2020, Mozaffari et al., 2021). The 

roll-coating method leads composite films to have special 

properties, such as a high mechanical property and surface area, 

simplicity to produce, and needless to pre-treated before use. 

Finally, four coated substrates were attached to fabricate a 

tunnel-like adsorbent, which was expected the molecules of CO 

are easily trapped, resulting in the enhancement of adsorption 

capacity as well as efficiency (Mozaffari et al., 2020, Mozaffari 

et al., 2021). 

For the investigation of gas adsorption ability, designed and 

manufactured an experimental set-up, containing a two-way-

valve container in which an adsorbent was placed. One valve is 

attached to a part installing a capsule of CO gas, which the right 

valve side is attached to a part installing a gas analyser. The use 

of this device for synthesizing a composite using the roller 

method made it possible to obtain a CO adsorbent with the 

following advantages: 

– uniform physical properties; 

– the use of a suspension of particles promotes uniform 

distribution of particles of the adsorbent layer of different 

compositions on the carrier; 

– a large number of intermolecular bonds between particles, 

which provides a strong and uniform layer of active substances; 

– as a result, the structure of the active layer has the highest 

density with open pores, optimal for the penetration of organic 

substances due to the gradual evaporation of the solvent, and as 

a consequence of an increase in the density of the layer; which 

is due to the capillary effect and the action of surface tension 

forces. 

Discussion 

Studies (Mozaffari et al., 2020, Mozaffari et al., 2021) found that 

for adsorbents doped with alumina, there is an increase in the 

contact surface area between adsorbent particles and CO 

molecules. This is clearly demonstrated by the concentration 

diagrams of adsorbed CO gas, which indicates an effective 

adsorption process and high adsorption capacity. For all 

adsorbents, there was a tendency for adsorption efficiency to 

increase from time to time until complete saturation. Adsorption 

stopped when all sites were filled with CO molecules. (Saber-

Samandari et al., 2014) (Figure 1).  

 

Figure 1. CO adsorption efficiency indicators for some alumina-doped adsorbents 

Since the current mini-review revealed significant interest 

among researchers in the problem of synthesizing alumina-

doped composite films for capturing CO gas, a comparative 

assessment of the adsorption capacity of such adsorbents was 

carried out. Yeom et al. (2018) found a significant decrease in 

the adsorption capacity of palladium-activated carbon 

(Pa-Ac), palladium-silicon (Pa-Si), Zeolite, Silicon, and 

Activated carbon from 77.60 to 25.20 mg/g in accordance with 

the specified order of materials. 

This suggests that there is great promise for alumina doped 

adsorbents due to their higher adsorption capacity of adsorbents 

compared to more expensive commercial adsorbents. Figure 2 

clearly demonstrates the advantages of alumina-doped 

composite films in terms of their adsorption capacity. 
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Figure 2. Maximum adsorption capacity limit of the studied 

adsorbents 

CONCLUSION  

The negative impact of CO on public health and components 
of the natural environment no longer requires proof. The 
natural protection of the atmosphere from the toxic effects of 
CO are green spaces, which are decreasing in quantity every 
year due to man-made activities. The current situation, as well 
as known trends and prospects in the field of atmospheric 
protection, motivate researchers to search for additional 
protection in the form of adsorbing filters. Current research 
identifies the use of γ-Al2O3 as a primary CO capture catalyst 
as promising. This is justified by the fact that γ-Al2O3 is a 
metastable alumina polymorph associated with unique 
characteristics related to the crystalline framework, surface 
chemistry and phase contribution. At the same time, 
modification of microstructures and surface frameworks can 
improve the performance of such nanoadsorbents even through 
additions in small quantities. Tin(IV) oxide (SnO2) has 
emerged as the most suitable additive for nanoadsorbents 
designed to capture CO gas because it has excellent adsorption 
properties, including strong structure, potential sensitivity, and 
low cost.  

The roller coating method for the production of composite 
films has proven to be a simple, cheap and reliable method for 
producing an effective nanoadsorbent. The results obtained 
through the testing mechanism showed that the nano-
adsorbent produced by roll coating method has high adsorption 
efficiency and adsorption capacity due to obvious reasons such 

as the unique properties they have as well as their design since 
four nano-adsorbents are bonded together to form a hollow cubic 
shape. Besides, the concentration of adsorbed gas and also 
adsorption capacity were enhanced with passing time until it 
reached saturation level, confirming that all sites of adsorbents 
were filled by molecules of CO. The researchers found that the 
maximum adsorption efficiency of adsorbents doped with 
alumina was no less than 94%. Alumina-doped adsorbents 
deserve serious attention for further development, since they are 
quite capable of competing in efficiency, ease of manufacture 
and cost with commercial adsorbents available on the market. 
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