Bioavailability of Metals in the Biosphere
More details
Hide details
1
Department of Chemical Sciences, Federal University Wukari, P.M.B. 1020 Wukari, Taraba State, Nigeria
Submission date: 2024-02-03
Acceptance date: 2024-03-11
Publication date: 2024-03-30
Trends in Ecological and Indoor Environmental Engineering, 2024;2(1):41-49
KEYWORDS
ABSTRACT
In some areas, soil, sediment, water, and organic materials may exhibit elevated concentrations of various metals. Under certain conditions, these metals can take on most bioavailable forms. To assess the impacts and potential risks associated with elevated element concentrations, understanding the fraction of whole elements in water, sediment, and soil which are bioavailable is very important. The study aims to examine these conditions to accurately assess potential environmental impacts. For the study, searches were carried out using the keywords "bioavailability", "metal" and "environment" in various combinations in English. The search was limited to articles published open access in NCBI or PubMed, Scopus, and Google Scholar. The language of the manuscript was not restricted. The complex interactions of these diverse factors highlight the difficulty of assessing and understanding the bioavailability of metals in different environmental matrices. The study identified key factors affecting the bioavailability of the metal. These factors can change over time and among different microorganisms, plants, and animals. Research involving field and laboratory studies conducted at specific locations in soil, sediment, and flora using selective chemical extraction techniques is critical to a detailed understanding of the complex ecological processes associated with the bioavailability of metals to organisms.
REFERENCES (70)
1.
Abbas, M. M. M., Abd El-Aziz, M. A., Kaddah, M. M., Hassan, A. K., El-Naggar, H. A., Radwan, M., ... & Bashar, M. A. (2023). Bioaccumulation, biosedimentation, and health hazards of elements in crayfish, procambarus clarkii from El-Rahawi Drain and El-Qanatir in the River Nile, Egypt. Biological Trace Element Research, 201(6), 3050–3059.
https://doi.org/10.1007/s12011....
2.
Ankley, G. T., Thomas, N. A., Di Toro, D. M., Hansen, D. J., Mahony, J. D., Berry, W. J., Thomas, N. A., Di Toro, D. M., ... & Zarba, C. S. (1994). Assessing potential bioavailability of metals in sediments: a proposed approach. Environmental Management, 18, 331–337.
https://doi.org/10.1007/BF0239....
3.
Annan, K., Dickson, R. A., Amponsah, I. K., & Nooni, I. K. (2013). The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Research, 5(2), 103–108.
https://doi.org/10.4103/0974-8....
4.
Bourg, A. C. M. (1988). Metals in aquatic and terrestrial systems: sorption, speciation, and mobilization. In Chemistry and Biology of Solid Waste: Dredged Material and Mine Tailings (pp. 3–32). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-....
5.
Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1995). Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59(1), 125–133.
https://doi.org/10.2136/sssaj1....
6.
Cai, M., Zhao, X., Wang, X., Shi, G., & Hu, C. (2021). Se changed the component of organic chemicals and Cr bioavailability in Pak Choi rhizosphere soil. Environmental Science and Pollution Research, 28, 67331–67342.
https://doi.org/10.1007/s11356....
7.
Cánovas, C. R., González, R. M., Vieira, B. J., Waerenborgh, J. C., Marques, R., Macías, F., ... & Prudencio, M. I. (2023). Metal mobility and bioaccessibility from cyanide leaching heaps in a historical mine site. Journal of Hazardous Materials, 448, 130948.
https://doi.org/10.1016/j.jhaz....
8.
Chaney, R. L. (1988). Metal speciation and interaction among elements affect trace element transfer in agricultural and environmental food-chains. Metal Precipitation: Theory, Analysis, and Application, 219–259.
9.
Chao, T. T. (1984). Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20(2), 101–135.
https://doi.org/10.1016/0375-6....
10.
Chen, Z., Wang, B., Shi, C., Ding, Y., Liu, T., & Zhang, J. (2022). Source, Distribution, and Risk Estimation of Hazardous Elements in Farmland Soils in a Typical Alluvial–Lacustrine Transition Basin, Hunan Province. International Journal of Environmental Research and Public Health, 19(17), 10971.
https://doi.org/10.3390/ijerph....
11.
Corey, R. B. (1990). Physical-chemical aspects of nutrient availability. In Soil testing and plant analysis (No. Third Edition, pp. xxvii+-784), Westerman, R. L. (Ed.), 11–24.
12.
Dahnke, W. C., & Olson, R. A. (1990). Soil test correlation, calibration, and recommendation. In Soil testing and plant analysis (No. Third Edition, pp. xxvii+-784), Westerman, R. L. (Ed.), 45–71.
13.
Davis, A., Ruby, M. V., & Bergstrom, P. D. (1994). Factors controlling lead bioavailability in the Butte mining district, Montana, USA. Environmental Geochemistry and Health, 16, 147–157.
https://doi.org/10.1007/BF0174....
14.
Dietrich, C. C., Tandy, S., Murawska-Wlodarczyk, K., Banaś, A., Korzeniak, U., Seget, B., & Babst-Kostecka, A. (2021). Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. Chemosphere, 285, 131437.
https://doi.org/10.1016/j.chem....
15.
Ding, L., Li, J., Liu, W., Zuo, Q., & Liang, S. X. (2017). Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. International Journal of Environmental Research and Public Health, 14(5), 532.
https://doi.org/10.3390/ijerph....
16.
Dołęgowska, S., Gałuszka, A., Migaszewski, Z. M., & Krzciuk, K. (2022). Bioavailability of selected trace and rare earth elements to Juncus effusus L.: the potential role of de-icing chlorides in the roadside environment. Plant and Soil, 472(1), 641–658.
https://doi.org/10.1007/s11104....
17.
Elder, J. F. (1988). Metal biogeochemistry in surface-water systems: a review of principles and concepts. United States Government Printing Office, Free on application to the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225, pp. 1–42.
18.
Elhaj Baddar, Z., Xu, X., & Spencer, B. (2023). Spatiotemporal Changes in Trace Metal Bioavailability in the Sediment Pore water of a Constructed Wetland Using Passive Pore water Samplers. Environmental Toxicology and Chemistry, 42(12), 2726–2736.
https://doi.org/10.1002/etc.57....
19.
Filipek, L. H., Nordstrom, D. K., & Ficklin, W. H. (1987). Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California. Environmental Science & Technology, 21(4), 388–396.
https://doi.org/10.1021/es0015....
20.
García-Lorenzo, M. L., Crespo-Feo, E., Esbrí, J. M., Higueras, P., Grau, P., Crespo, I., & Sánchez-Donoso, R. (2019). Assessment of potentially toxic elements in technosols by tailings derived from Pb–Zn–Ag mining activities at San Quintín (Ciudad real, Spain): Some insights into the importance of integral studies to evaluate metal contamination pollution hazards. Minerals, 9(6), 346.
https://doi.org/10.3390/min906....
21.
Gauthier-Manuel, H., Radola, D., Choulet, F., Buatier, M., Vauthier, R., Morvan, T., ... & Gimbert, F. (2021). A multidisciplinary approach for the assessment of origin, fate and ecotoxicity of metal (loid) s from legacy coal mine tailings. Toxics, 9(7), 164.
https://doi.org/10.3390/toxics....
22.
Gong, B., He, E., Qiu, H., Van Gestel, C. A., Romero-Freire, A., Zhao, L., ... & Cao, X. (2020). Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity. Science of The Total Environment, 745, 140926.
https://doi.org/10.1016/j.scit....
23.
González-Valoys, A. C., Jiménez Salgado, J. U., Rodríguez, R., Monteza-Destro, T., Vargas-Lombardo, M., García-Noguero, E. M., ... & Higueras, P. (2021). An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model. Environmental Geochemistry and Health, 45, 1–20.
https://doi.org/10.1007/s10653....
24.
Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221(8), 1148–1152.
https://doi.org/10.1016/j.ecol....
25.
Guan, Z., Wei, R., Liu, T., Li, J., Ao, M., Sun, S., ... & Qiu, R. (2023). Water Management Impacts on Chromium Behavior and Uptake by Rice in Paddy Soil with High Geological Background Values. Toxics, 11(5), 433.
https://doi.org/10.3390/toxics....
26.
Guarino, A., Albanese, S., Cicchella, D., Ebrahimi, P., Dominech, S., Pacifico, L. R., ... & Lima, A. (2022). Factors influencing the bioavailability of some selected elements in the agricultural soil of a geologically varied territory: The Campania region (Italy) case study. Geoderma, 428, 116207.
https://doi.org/10.1016/j.geod....
27.
Guérin, T., Ghinet, A., & Waterlot, C. (2022). The phytoextraction power of Cichorium intybus L. on metal-contaminated soil: Focus on time-and cultivar-depending accumulation and distribution of cadmium, lead and zinc. Chemosphere, 287, 132122.
https://doi.org/10.1016/j.chem....
28.
Havlin, J. L. (2020). Soil: Fertility and nutrient management. In Landscape and land capacity (pp. 251–265). CRC Press. Available:
https://www.taylorfrancis.com/....
29.
Hu, M., Li, F., Liu, C., & Wu, W. (2015). The diversity and abundance of As (III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports, 5, 13611.
https://doi.org/10.1038/srep13....
30.
Hussain, T., Murtaza, G., Wang, X., Zia, M. H., Aziz, H., Ali, S., ... & Fiaz, S. (2021). Bioassimilation of lead and zinc in rabbits fed on spinach grown on contaminated soil. Ecotoxicology and Environmental Safety, 224, 112638.
https://doi.org/10.1016/j.ecoe....
31.
Idowu, G. A. (2022). Heavy metals research in Nigeria: a review of studies and prioritization of research needs. Environmental Science and Pollution Research, 29(44), 65940–65961.
https://doi.org/10.1007/s11356....
32.
Ippolito, J. A., Berry, C. M., Strawn, D. G., Novak, J. M., Levine, J., & Harley, A. (2017). Biochars reduce mine land soil bioavailable metals. Journal of Environmental Quality, 46(2), 411–419.
https://doi.org/10.2134/jeq201....
33.
Jin, Z., Gu, C., Fan, X., Cai, J., Bian, Y., Song, Y., ... & Jiang, X. (2023). Novel insights into the predominant factors affecting the bioavailability of polycyclic aromatic hydrocarbons in industrial contaminated areas using PLS-developed model. Chemosphere, 319, 138033.
https://doi.org/10.1016/j.chem....
34.
Koptsik, S. V., & Koptsik, G. N. (2022). Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: A review. Eurasian Soil Science, 55(5), 627–640.
https://doi.org/10.1134/S10642....
35.
Lee, B. G., Lee, J. S., Luoma, S. N., Choi, H. J., & Koh, C. H. (2000). Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environmental Science & Technology, 34(21), 4517–4523.
https://doi.org/10.1021/es0010....
36.
Liao, W., Zheng, Y., Feng, C., Zhong, W., Zhu, Z., Xie, H., ... & Giesy, J. P. (2023). An often-overestimated ecological risk of copper in Chinese surface water: bioavailable fraction determined by multiple linear regression of water quality parameters. Environmental Sciences Europe, 35(1), 84.
https://doi.org/10.1186/s12302....
37.
Liu, J., Shu, A., Song, W., Shi, W., Li, M., Zhang, W., ... & Gao, Z. (2021). Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 404, 115287.
https://doi.org/10.1016/j.geod....
38.
Luoma, S. N. (1983). Bioavailability of trace metals to aquatic organisms—a review. Science of the Total Environment, 28(1–3), 1–22.
https://doi.org/10.1016/S0048-....
39.
Mbhele, P. P. (2007). Remediation of soil and water contaminated by heavy metals and hydrocarbons using silica encapsulation (Doctoral dissertation, University of the Witwatersrand). Available:
https://wiredspace.wits.ac.za/....
41.
Miranda, L. S., Ayoko, G. A., Egodawatta, P., Hu, W. P., Ghidan, O., & Goonetilleke, A. (2021). Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways. Science of the Total Environment, 763, 142984.
https://doi.org/10.1016/j.scit....
42.
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., ... & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science, 34(3), 101865.
https://doi.org/10.1016/j.jksu....
43.
Morse, J. W., & Luther Iii, G. W. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19–20), 3373–3378.
https://doi.org/10.1016/S0016-....
44.
Mylon, S. E., Twining, B. S., Fisher, N. S., & Benoit, G. (2003). Relating the speciation of Cd, Cu, and Pb in two Connecticut rivers with their uptake in algae. Environmental Science & Technology, 37(7), 1261–1267.
https://doi.org/10.1021/es0259....
45.
Nedrich, S. M., & Burton, G. A. (2017). Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels. Environmental Toxicology and Chemistry, 36, 2456–2464.
https://doi.org/10.1002/etc.37....
46.
Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for heavy metal removal: a review. SN Applied Sciences, 5(5), 125.
https://doi.org/10.1007/s42452....
47.
O'Connor, G. A. (1988). Use and misuse of the DTPA soil test (Vol. 17, No. 4, pp. 715–718). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
https://doi.org/10.2134/jeq198....
48.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
https://doi.org/10.1136/bmj.n7....
49.
Paquin, P. R., Gorsuch, J. W., Apte, S., Batley, G. E., Bowles, K. C., Campbell, P. G., ... & Wu, K. B. (2002). The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1-2), 3–35.
https://doi.org/10.1016/S1532-....
51.
Pouyat, R. V., & McDonnell, M. J. (1991). Heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water, Air, and Soil Pollution, 57, 797–807.
https://doi.org/10.1007/BF0028....
52.
Prosi, F. (1989). Factors controlling biological availability and toxic effects of lead in aquatic organisms. Science of the Total Environment, 79(2),.
54.
Rensing, C., & Rosen, B. P. (2009). Heavy metals cycle (arsenic, mercury, selenium, others). Encyclopedia Of Microbiology, 205, 19.
https://doi.org/10.1016/B978-0....
55.
Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation & Bioavailability, 10(2), 61–75.
https://doi.org/10.3184/095422....
57.
Salbu, B. (2016). Environmental impact and risk assessments and key factors contributing to the overall uncertainties. Journal of Environmental Radioactivity, 151, 352–360.
https://doi.org/10.1016/j.jenv....
58.
Salomons, W. (1995). Environmental impact of metals derived from mining activities: processes, predictions, prevention. Journal of Geochemical Exploration, 52(1–2), 5–23.
https://doi.org/10.1016/0375-6....
59.
Salomons, W., Kerdijk, H., Van Pagee, H., Klomp, R., & Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuarine and coastal zones (pp. 157–198). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-....
60.
Sarkar, B., Mukhopadhyay, R., Ramanayaka, S., Bolan, N., & Ok, Y. S. (2021). The role of soils in the disposition, sequestration and decontamination of environmental contaminants. Philosophical Transactions of the Royal Society B, 376(1834), 20200177.
https://doi.org/10.1098/rstb.2....
61.
Singh, P., & Prasad, S. (2023). A review on iron, zinc and calcium biological significance and factors affecting their absorption and bioavailability. Journal of Food Composition and Analysis, 105529.
https://doi.org/10.1016/j.jfca....
62.
Slaveykova, V. I., & Wilkinson, K. J. (2002). Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environmental Science & Technology, 36(5), 969–975.
https://doi.org/10.1021/es0101....
63.
Stauber, J. L., Gadd, J., Price, G. A., Evans, A., Holland, A., Albert, A., ... & Warne, M. S. J. (2023). Applicability of chronic multiple linear regression models for predicting zinc toxicity in Australian and New Zealand freshwaters. Environmental Toxicology and Chemistry, 42(12), 2614–2629.
https://doi.org/10.1002/etc.57....
64.
Storm, G. L., Fosmire, G. J., & Bellis, E. D. (1994). Persistence of metals in soil and selected vertebrates in the vicinity of the Palmerton zinc smelters (Vol. 23, No. 3, pp. 508–514). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
https://doi.org/10.2134/jeq199....
65.
Vaikosen, E. N., & Alade, G. O. (2011). Evaluation of pharmacognostical parameters and heavy metals in some locally manufactured herbal drugs. Journal of Chemical and Pharmaceutical Research, 3(2), 88–97.
66.
Vasile, G. G., Tenea, A. G., Dinu, C., Iordache, A. M. M., Gheorghe, S., Mureseanu, M., & Pascu, L. F. (2021). Bioavailability, accumulation and distribution of toxic metals (As, Cd, Ni and pb) and their impact on sinapis alba plant nutrient metabolism. International Journal of Environmental Research and Public Health, 18(24), 12947.
https://doi.org/10.3390/ijerph....
67.
Wang, J. X., Xu, D. M., Fu, R. B., & Chen, J. P. (2021). Bioavailability assessment of heavy metals using various multi-element extractants in an indigenous zinc smelting contaminated site, southwestern China. International Journal of Environmental Research and Public Health, 18(16), 8560.
https://doi.org/10.3390/ijerph....
68.
Wang, Y., Ren, Q., Li, T., Zhan, W., Zheng, K., Liu, Y., & Chen, R. (2021). Influences of modified biochar on metal bioavailability, metal uptake by wheat seedlings (Triticum aestivum L.) and the soil bacterial community. Ecotoxicology and Environmental Safety, 220, 112370.
https://doi.org/10.1016/j.ecoe....
69.
Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.
https://doi.org/10.1016/j.scit....
70.
Zhao, Z., Jiang, H., Kong, L., Shen, T., Zhang, X., Gu, S., ... & Li, Y. (2021). Assessment of potential ecological risk of heavy metals in surface soils of Laizhou, Eastern China. Water, 13(21), 2940.
https://doi.org/10.3390/w13212....