Revolutionizing Biodiesel Synthesis: Kinetic and Thermodynamic Insights with Carbonized Doum-Shell Catalyst
 
More details
Hide details
1
Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B. 2076, Yola, Adamawa State, Nigeria
 
 
Submission date: 2024-06-14
 
 
Acceptance date: 2024-06-29
 
 
Publication date: 2024-06-30
 
 
Corresponding author
Haruna Mavakumba Kefas   

hmkefas@mau.edu.ng
 
 
Trends in Ecological and Indoor Environmental Engineering, 2024;2(2):11-23
 
KEYWORDS
ABSTRACT
Background:
Conventional methods of biodiesel (FAME) synthesis often involve transesterification processes that are catalysed by homogeneous catalysts, which present challenges in terms of catalyst recovery, environmental impact, and production cost. Heterogeneous catalysts, particularly those derived from agricultural waste, have emerged as promising alternatives due to their reusability, environmental friendliness, and cost-effectiveness.

Objectives:
The study aims to bridge gaps by providing a comprehensive kinetic analysis of biodiesel production using a synthesized and novel, doum-shell catalyst. It incorporates first, second, and third-order rate model kinetics, alongside the determination of some energy parameters.

Methods:
Doum palm shell (DPS) was characterized by Fourier Transform Infrared (FTIR) and Atomic Force Microscope (AFM), and then carbonized, ground, and sulfonated to create a biochar catalyst, which was then used in the esterification of palmitic acid (PA) with methanol. Kinetic modelling of the esterification process was performed, followed by deriving thermodynamic parameters using Arrhenius and Eyring-Polanyi equations.

Results:
Kinetic modelling identified the First-Order reaction as the most appropriate for describing the esterification process at an optimum performing temperature of 55 °С, 180 min reaction time and rate constant, k = 7 · 10-4 min-1. Thermodynamic parameters were derived from the Arrhenius and Eyring-Polanyi equations, providing a deeper understanding of the energy changes involved in the esterification reaction. The activation energy, pre-exponential factor, entropy, enthalpy and free energies obtained for the First-Order, describe the catalysing of the synthesis process by DPS as robust, reversible, non-spontaneous, feasible and energy efficient. In both kinetics and thermodynamics carried out, the Second- and Third-Order of reaction analysis described the experimental data poorly due to lower R2 values comparative to the First-Order rate at 45, 55 and 65 °С. FTIR analysis confirmed the successful conversion of feedstock to biodiesel, with distinct ester functional groups such as, –OH, –SO3H and –COOH groups, identified in the DPS catalyst.

Conclusions:
This research lays the groundwork for future studies and large-scale implementation of this catalyst in biodiesel production, particularly in regions with abundant doum palm resources. Through comprehensive experimentation and analysis, the carbonized doum-shell catalyst was demonstrated to be a viable and efficient option for FAME synthesis from PA and methanol.
REFERENCES (54)
1.
Aisabor, W., Lukman, Y., Otaru, A. J., Anakhu, A. E., & Otoikhian, S. K. (2016). Optimisation and kinetics of rubber seed oil biodiesel production. Journal of Biofuels, 7(2), 53–61. https://doi.org/10.5958/0976-4....
 
2.
Alkali, M. I., Abdus-Salam, N., Dikwa, M. K., Oyewumi-Musa, R. T., Jimoh, A. A., Ojo, I., & John, G. (2022). Adsorption of Pb (II) ion onto modified doum palm (Hyphaene thebaica) shells: Isotherm, kinetic and thermodynamic studies. Arid Zone Journal of Basic and Applied Research (AJBAR), 1(5), 80–102. https://doi.org/10.55639/607gf....
 
3.
Amesho, K. T. T., Lin, Y.-C., Chen, C.-E., Cheng, P.-C., & Ponnusamy, V. K. (2022). Optimization and kinetics studies of biodiesel synthesis from Jatropha curcas oil under the application of eco‑friendly microwave heating technique: An environmentally benign and sustainable bio‑waste management approach. Sustainable Environment Research, 32(41), 1–13. https://doi.org/10.1186/s42834....
 
4.
Arifin, S. F. (2009). Production of biodiesel from waste cooking oil and RBD palm oil using batch transesterification process (R. Abdul Rasid (ed.)) [Degree of Bachelor of Chemical Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang]. https://core.ac.uk/download/pd....
 
5.
Avhad, M. R., & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696–718. https://doi.org/10.1016/j.rser....
 
6.
Babajide, O. O. (2011). Optimisation of biodiesel production via different catalytic and process systems (L. Petrik, F. Ameer, & B. Amigun (eds.)) [MSc (Industrial Chemistry) Philosophiae Doctor in the Department of Chemistry, University of the Western Cape]. https://core.ac.uk/download/pd....
 
7.
Bohlouli, A., & Mahdavian, L. (2019). Catalysts used in biodiesel production: A review. Biofuels, 1–14. https://doi.org/10.1080/175972....
 
8.
Boonnoun, P., Maneesiri, A., & Pattamaprom, C. (2008). Production of biodiesel from palm fatty acid distillate. Thammasat International Journal of Science and Technology, 13(4), 32–37. https://doi.org/https://ph02.t....
 
9.
Bradley, M. (2007). Biodiesel (FAME) analysis by FT-IR. Thermo Scientific-Application Note, 51258, 2–4. https://tools.thermofisher.com....
 
10.
Brüning, M., Aylwin, C., & Alvarado, F. A. D. (2015). Differential equations on the kinetics of biodiesel production. Fuel, 142(303), 303. https://doi.org/10.1016/j.fuel....
 
11.
Callistus, U. N., Ndidi, A. F., Okechukwu, O. D., & Patrick, A. E. (2016). Reaction kinetics of biodiesel production from refined cottonseed oil using calcium oxide. World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering, 10(6), 739–742. http://scholar.waset.org/1307-....
 
12.
Camara, L. D. T., & Aranda, D. A. G. (2011). Reaction kinetic study of biodiesel production from fatty acids esterification with ethanol. Industrial & Engineering Chemistry Research, 50, 2544–2547. https://doi.org/10.1021/ie1005....
 
13.
Carmo, A. C., De Souza, L. K. C., Da Costa, C. E. F., Longo, E., Zamian, J. R., & Da Rocha Filho, G. N. (2009). Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel, 88(3), 461–468. https://doi.org/10.1016/j.fuel....
 
14.
Ceran, Z. D., Demir, V., & Akgün, M. (2024). Optimization and kinetic study of biodiesel production from Jatropha curcas oil in supercritical methanol environment using ZnO/γ‑Al2O3 catalyst. Biomass Conversion and Biorefinery, 1–12. https://doi.org/10.1007/s13399....
 
15.
Chang, A. S., Sherazi, S. T. H., Kandhro, A. A., Mahesar, S. A., Chang, F., Shah, S. N., Laghari, Z. H., & Panhwar, T. (2016). Characterization of palm fatty acid distillate of different oil processing industries of Pakistan. Journal of Oleo Science (JOS), 65(11), 897–901. https://doi.org/10.5650/jos.es....
 
16.
Chhabra, P., Mosbach, S., Karimi, I. A., & Kraft, M. (2019). Practically useful models for kinetics of biodiesel production [Research-article]. ACS Sustainable Chemistry & Engineering, 7, 4983–4992. https://doi.org/10.1021/acssus....
 
17.
Crymble, S. D. (2010). Optimization and reaction kinetics of the production of biodiesel from castor oil via sodium methoxide-catalyzed methanolysis (R. Hernandez & M. Zappi (eds.)) [Degree of Master of Science Graduate Thesis in Chemical Engineering, Dave C. Swalm School of Chemical Engineering, Mississippi State University]. https://scholarsjunction.mssta....
 
18.
Daniyan, I. A., Bello, E. I., Ogedengbe, T. I., & Mogaji, P. B. (2019). Gas chromatography and Fourier Transform Infrared analysis of biodiesel from used and unused palm olein oil. International Journal of Engineering Research in Africa, 42, 47–64. https://doi.org/10.4028/www.sc....
 
19.
Eevera, T., Kaliaperumal, R., & Saradha, S. (2009). Biodiesel production process optimization and characterization to assess the suitability of product for varied environmental conditions. Renewable Energy, 34(3), 762–765. https://doi.org/10.1016/j.rene....
 
20.
Emeji, I. C., Afolabi, A. S., Abdulkareem, A. S., & Kalala, J. (2015). Characterization and kinetics of biofuel produced from waste cooking oil. Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II [WCECS 2015], October 21-23, 2015, San Francisco, USA, II, 21–24.
 
21.
Esan, A. O., Babalola, B. A., Raji, Y. A., Oladigbolu, M. A., Ajao, G. Q., Olawoore, I. T., & Adeyemi, A. D. (2024). Characterization of palm fatty acid distillate and soybean deodorized distillate for biodiesel production. Journal of Applied Science and Environmental Management (JASEM), 28(5), 1461–1466. https://doi.org/10.4314/jasem.....
 
22.
Ghorbani-Choghamarani, A., Taherinia, Z., & Tyula, Y. A. (2022). Efficient biodiesel production from oleic and palmitic acid using a novel molybdenum metal–organic framework as efficient and reusable catalyst. Scientific Reports, 12(10338), 1–12. https://doi.org/10.1038/s41598....
 
23.
Gurunathan, B., & Ravi, A. (2015). Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology, 190, 424–428. https://doi.org/10.1016/j.bior....
 
24.
Harsono, S. S. (2011). Biodiesel production from palm oil technology. Research Journal of Agricultural Science, 43(4), 80–85. https://rjas.ro/download/paper....
 
25.
Haryanto, A., Gita, A. C., Wahyusaputra, T., & Telaumbanua, M. (2020). First order kinetics of biodiesel synthesis using used frying oil through transesterification reaction. Aceh International Journal of Science and Technology, 9(1), 1–11. https://doi.org/10.13170/aijst....
 
26.
Hazrat, M. A., Rasul, M. G., Khan, M. M. K., Ashwath, N., Fattah, I. M. R., Ong, H. C., & Mahlia, T. M. I. (2023). Biodiesel production from transesterification of Australian Brassica napus L. oil: Optimisation and reaction kinetic model development. Environment, Development and Sustainability, 25, 12247–12272. https://doi.org/10.1007/s10668....
 
27.
Hazrat, M. A., Rasul, M. G., Khan, M. M. K., Ashwath, N., Silitonga, A. S., Fattah, I. M. R., & Mahlia, T. M. I. (2022). Kinetic modelling of esterification and transesterification processes for biodiesel production utilising waste-based resource. Catalysts, 12(1472), 1–37. https://doi.org/10.3390/catal1....
 
28.
Hidayat, A., Rochmadi, Wijaya, K., Nurdiawati, A., Kurniawan, W., Hinode, H., Yoshikawa, K., & Budiman, A. (2015). Esterification of palm fatty acid distillate with high amount of free fatty acids using coconut shell char based catalyst. Energy Procedia, 75, 969–974. https://doi.org/10.1016/j.egyp....
 
29.
İlgen, O. (2022). Study on kinetics and reaction parameters of biodiesel production from sunflower oil and methanol using zinc oxide supported calcium oxide. Periodica Polytechnica Chemical Engineering, 66(2), 261–268. https://doi.org/10.3311/PPch.1....
 
30.
Inuwa, S. Z., Ndife, J., & Bamalli, Z. (2023). Review on functional values of doum palm fruit. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 9(3a), 29–40. https://doi.org/10.4314/dujopa....
 
31.
Jacob, I., Clausen, E., & Carrier, D. J. (2008). Kinetics determination of soybean oil transesterification in the design of a continuous biodiesel production process [Biological and Agricultural Engineering Undergraduate Honirs Theses, University of Arkansas, Fayetteville]. https://scholarworks.uark.edu/....
 
32.
Japir, A. A., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja, S., & Yusop, M. R. (2017). Physicochemical characteristics of high free fatty acid crude palm oil. Oilseeds & Fats Crops and Lipids (OCL), 24(5), 1–9. https://doi.org/10.1051/ocl/20....
 
33.
Javed, F., Saif-ul-Allah, M. W., Ahmed, F., Rashid, N., Hussain, A., Zimmerman, W. B., & Rehman, F. (2022). Kinetics of biodiesel production from microalgae using microbubble interfacial technology. Bioengineering, 9(739), 1–17. https://doi.org/10.3390/ bioengineering9120739.
 
34.
Jumaah, A. M., Yusoff, Mohamad Firdaus, M., & Salimon, J. (2018). Physicochemical properties and analysis of Malaysian palm fatty acid distilled. The 2017 UKM FST Postgraduate Colloquium: AIP Conference Proceedings, 1940(020092), 1–6. https://doi.org/10.1063/1.5028....
 
35.
Jumaah, M. A., Yusoff, M. F. M., Salimon, J., & Bahadi, M. (2019). Physical characteristics of palm fatty acid distillate. Journal of Chemical and Pharmaceutical Sciences (JCPS), 12(1), 1–5. https://www.jchps.com.
 
36.
Kefas, H. M., Yunus, R., Rashid, U., & Taufiq-yap, Y. H. (2020). Modified sulfonated glucose-catalyzed esterification of palm fatty acid distillate: Kinetics and fuel properties. American Journal of Chemical Engineering (AJCE), 8(6), 131–138. https://doi.org/10.11648/j.ajc....
 
37.
Khan, A. K. (2002). Research into biodiesel kinetics & catalyst development (V. Rudolph, Y. He, A. Hanley, & G. Kerven (eds.)) [Individual Inquiry A Thesis, Department of Chemical Engineering, The University of Queensland]. https://angelfire.com/ks3/go-d....
 
38.
Khan, H. M., Iqbal, T., Yasin, S., Ali, C. H., Abbas, M. M., Jamil, M. A., Hussain, A., Soudagar, M. E. M., & Rahman, M. M. (2021). Application of agricultural waste as heterogeneous catalysts for biodiesel production. Catalysts, 11(1215), 1–19. https://doi.org/10.3390/catal1....
 
39.
Kostic, M. D., Velickovic, A. V, Jokovic, N. M., Stamenkovic, O. S., & Veljkovic, V. B. (2016). Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production. Waste Management, 48, 619–629. https://doi.org/10.1016/j.wasm....
 
40.
Liman, A. Z., Adagba, T., & Umar, H. A. (2020). Effect of crushed doum palm shell as partial replacement of coarse aggregate in concrete. FUDMA Journal of Sciences (FJS), 4(4), 1–9. https://doi.org/10.33003/fjs-2....
 
41.
Mahatale, M., Kapoor, S., & Patil, D. (2019). Kinetics and thermodynamic studies of biodiesel production from used sun flower oil. International Journal of Current Engineering and Scientific Research (IJCESR), 6(1), 624–633. https://troindia.in/journal/ij....
 
42.
Moradi, G. R., Mohadesi, M., Ghanbari, M., Moradi, M. J., Hosseini, S., & Davoodbeygi, Y. (2015). Kinetic comparison of two basic heterogenous catalysts obtained from sustainable resources for transesterification of waste cooking oil. Biofuel Research Journal, 6, 236–241. https://www.biofueljournal.com.
 
43.
Mujeli, M., Kefas, H. M., Shitu, A., & Ayuba, I. (2016). Optimization of biodiesel production from crude cotton seed oil using central composite design. American Journal of Chemical and Biochemical Engineering, 1(1), 8–14. https://doi.org/10.11648/j.ajc....
 
44.
Nandi, S., Bhattacharyya, R., & Ghosh, T. K. (2019). Process optimization and kinetics of biodiesel production from renewable raw materials. Saudi Journal of Engineering and Technology, 4(6), 248–252. https://doi.org/10.21276/sjeat....
 
45.
Noreen, S., Sahar, I., Masood, N., Iqbal, M., Zahid, M., Nisar, J., Khan, M. I., & Nazir, A. (2021). Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts. Zeitschrift Für Physikalische Chemie, 1–16. https://doi.org/10.1515/zpc-20....
 
46.
Ogbole, D. A., & Ademoh, N. A. (2021). Development of a doum palm shelling machine. International Conference on Engineering for Sustainable World (ICESW 2020), 1107(012193), 1–11. https://doi.org/10.1088/1757-8....
 
47.
Oladimeji, O. I., Nwadiokwu, E. P., Odogwu, D. A., Olubusoye, B. S., & Olaleye, B. V. (2022). Optimization of biodiesel production from used cooking oil using anthill as catalyst. European Modern Studies Journal, 6(3), 434–443. https://journal-ems.com.
 
48.
Rajalingam, A., Jani, S. P., Kumar, A. S., & Khan, M. A. (2020). Production methods of biodiesel. Journal of Chemical and Pharmaceutical Research, 8(3), 170–173. http://www.jocpr.com/abstract/....
 
49.
Roschat, W., Butthichak, P., Daengdet, N., Phewphong, S., Kaewpuang, T., Moonsin, P., Yoosuk, B., & Promarak, V. (2020). Kinetics study of biodiesel production at room temperature based on eggshell-derived CaO as basic heterogeneous catalyst. Engineering and Applied Science Research (EASR), 47(4), 361–373. https://doi.org/10.14456/easr.....
 
50.
Seth, S. A., Aji, I. S., & Tokan, A. (2018). Effects of particle size and loading on tensile and flexural properties of polypropylene reinforced doum palm shell particles composites. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 44(1), 231–239. http://asrjetsjournal.org.
 
51.
Sharma, U., Muralidharan, N. G., Vijayalakshmi, S., & Ranjitha, J. (2020). Process optimisation and kinetics study of biodiesel production from dairy waste scum using ZnO heterogeneous nanocatalyst. IOP Conference Series: Materials Science and Engineering 923 [ICTAMDMES’20], 923(012072), 1–9. https://doi.org/10.1088/1757-8....
 
52.
Suleiman, K. K., Isah, M., Abdulfatai, A. S., & Danyaro, Z. (2023). Kinetics and thermodynamics study of biodiesel production from neem oil using alumina as a catalyst. FUDMA Journal of Sciences (FJS), 7(3), 65–71. https://doi.org/10.33003/fjs-2....
 
53.
Ulfah, M., Firdaus, Sundari, E., & Praputri, E. (2020). A comparison of palm fatty acid distillate (PFAD) esterification using sulphated alumina versus sulphuric acid catalyst. The 5th Engineering Science & Technology International Conference-IOP Conference Series: Materials Science and Engineering, 990(012015), 1–7. https://doi.org/10.1088/1757-8....
 
54.
Zahan, K. A., & Kano, M. (2018). Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(2132), 1–25. https://doi.org/10.3390/en1108....
 
Journals System - logo
Scroll to top