Determination of Suitable Probability Distribution of Rainfall in Pakistan Considering Multiplicity
More details
Hide details
1
School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China
2
School of Environmental Science and Engineering, North China Electric Power University, Beijing, China
3
School of Public Administration, Department of Land Resources Management, Zhejiang Gongshang University, Zhejiang Hangzhou 310018, China
4
Department of Environmental Science, Abdul Wali Khan University, Mardan, Pakistan
5
School of geography and environment, Shandong normal university, Jinan, China
6
Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
Submission date: 2023-12-19
Acceptance date: 2023-12-28
Publication date: 2023-12-30
Trends in Ecological and Indoor Environmental Engineering, 2023;1(1):24-34
KEYWORDS
ABSTRACT
Extreme rainfall events are occasional, and understanding their intensity and frequency is important for long-term planning and for public safety. The current study aims to investigate the stability of extreme precipitation events in different regions of Pakistan, their independence and the uniformity of their occurrence. A rainfall frequency analysis (RFA) was conducted based on information from 8 weather stations namely, the distribution and moments L of the annual maximum precipitation in Pakistan were investigated; Using goodness-of-fit criteria, the study determined the possible distribution of precipitation. Relatively Absolute Error (RAE) results are based on the most appropriate GUM distribution, revealed that the Sialkot, Multan, Faisalabad and DI Khan stations produce very low errors (0.266, 0.847, 0.075, 0.856, 1.671, 2.522, 3.659, 4.524). It was found that the most suitable distribution is LN distribution for Peshawar, Sibbi and Karachi Stations. The GEV distribution also performs well with small errors for various return periods (0.266, 0.847, 0.075, 0.856, 1.671, 2.522, 3.659, 4.524), corresponding to the return periods 2, 5, 25, 50, 100, 200, 500 and 1000 years. In contrast, P3 has the advantage of a return period of 10 years for all stations, as they all produce similar results for this particular return period. The current research provides valuable insights into estimating extreme rainfall at stations where rainfall data are available.
REFERENCES (36)
1.
Alam, F., Salam, M., Khalil, N. A., khan, O., & Khan, M. (2021). Rainfall trend analysis and weather forecast accuracy in selected parts of Khyber Pakhtunkhwa, Pakistan. SN Applied Sciences, 3, 1–14.
https://doi.org/10.1007/s42452....
2.
Alam, J., Muzzammil, M., & Khan, M. K. (2016). Regional flood frequency analysis: comparison of L-moment and conventional approaches for an Indian catchment. ISH Journal of Hydraulic Engineering, 22(3), 247–253.
https://doi.org/10.1080/097150....
3.
Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P. D., & Rahman, M. A. (2012). Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. International Journal of Climatology, 32(6), 953–966.
https://doi.org/10.1002/joc.34....
4.
Back, Á. J., Henn, A., & Oliveira, J. L. R. (2011). Equações de chuvas intensas para o estado de Santa Catarina. Revista Brasileira de Ciência do Solo, 35, 2127–2134.
5.
Beskow, S., Caldeira, T. L., de Mello, C. R., Faria, L. C., & Guedes, H. A. S. (2015). Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies, 4, 123–133.
https://doi.org/10.1016/j.ejrh....
6.
Cassalho, F., Beskow, S., de Mello, C. R., de Moura, M. M., Kerstner, L., & Ávila, L. F. (2018). At-site flood frequency analysis coupled with multiparameter probability distributions. Water Resources Management, 32, 285–300.
https://doi.org/10.1007/s11269....
7.
Cooley, D., Nychka, D., & Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association, 102(479), 824–840.
https://doi.org/10.1198/016214....
8.
Darnthamrongkul, W., & Mozingo, L. A. (2021). Toward sustainable stormwater management: Understanding public appreciation and recognition of urban Low Impact Development (LID) in the San Francisco Bay Area. Journal of Environmental Management, 300, 113716.
https://doi.org/10.1016/j.jenv....
9.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.
https://doi.org/10.1080/016214....
10.
Durrans, S. R., & Kirby, J. T. (2004). Regionalization of extreme precipitation estimates for the Alabama rainfall atlas. Journal of Hydrology, 295(1–4), 101–107.
https://doi.org/10.1016/j.jhyd....
11.
Fawad, M., Ahmad, I., Nadeem, F. A., Yan, T., & Abbas, A. (2018). Estimation of wind speed using regional frequency analysis based on linear‐moments. International Journal of Climatology, 38(12), 4431–4444.
https://doi.org/10.1002/joc.56....
12.
Hosking, J. R. M., & Wallis, J. R. (1997). Regional Frequency Analysis, by J. R. M. Hosking and James R. Wallis, pp. 240. ISBN 0521430453. Cambridge, UK: Cambridge University Press, April 1997.
13.
Huang, K., Chen, L., Zhou, J., Zhang, J., & Singh, V. P. (2018). Flood hydrograph coincidence analysis for mainstream and its tributaries. Journal of Hydrology, 565, 341–353.
https://doi.org/10.1016/j.jhyd....
14.
Khan, S. A., Hussain, I., Hussain, T., Faisal, M., Muhammad, Y. S., & Mohamd Shoukry, A. (2017). Regional frequency analysis of extremes precipitation using L-moments and partial L-moments. Advances in Meteorology, 2017.
15.
Khan, T., Ahmad, I., Wang, Y., Salam, M., Shahzadi, A., & Batool, M. (2022). Comparison approach for wind resource assessment to determine the most precise approach. Energy & Environment, 0958305X221135981.
https://doi.org/10.1177/095830....
16.
Khan, T., Wang, Y., & Anwar, M. (2021). Analysis of Annual Maximum Rainfall for Frequency Distribution to Determine the Best-fitted Probability Distribution for Different Sites in Pakistan. 17 August 2021, PREPRINT (Version 1) available at Research Square.
https://doi.org/10.21203/rs.3.....
17.
Koh, D. K., Choo, T. H., Maeng, S. J., & Trivedi, C. (2008). Regional frequency analysis for rainfall using L-moment. The Journal of the Korea Contents Association, 8(3), 252–263.
18.
Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate, 12(8), 2515–2527.
https://doi.org/10.1175/1520-0...<2515:LTTIEP>2.0.CO;2.
19.
Kunz, M., Mohr, S., Rauthe, M., Lux, R., & Kottmeier, C. (2010). Assessment of extreme wind speeds from Regional Climate Models–Part 1: Estimation of return values and their evaluation. Natural Hazards and Earth System Sciences, 10(4), 907–922.
https://doi.org/10.5194/nhess-....
20.
Lawan, S. M., Abidin, W. A. W. Z., Chai, W. Y., Baharun, A., & Masri, T. (2015). Wind Energy Potential in Kuching Areas of Sarawak for Small-Scale Power Application. International Journal of Engineering Research in Africa, 15, 1–10.
https://doi.org/10.4028/www.sc....
21.
Mann, H., & Whitney, D. (1947). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Annals of Mathematical Statistics, 18(1), 50–60.
22.
Mello, C. D., Viola, M. R., Beskow, S., & Norton, L. D. (2013). Multivariate models for annual rainfall erosivity in Brazil. Geoderma, 202, 88–102.
https://doi.org/10.1016/j.geod....
23.
Młyński, D., Petroselli, A., & Wałęga, A. (2018). Flood Frequency Analysis by an Event-based Rainfall-Runoff Model in Selected Catchments of Southern Poland. Soil & Water Research, 13(3).
https://doi.org/10.17221/153/2....
24.
Ng, J. L., Yap, S. Y., Huang, Y. F., Noh, N. M., Al-Mansob, R. A., & Razman, R. (2020, April). Investigation of the best fit probability distribution for annual maximum rainfall in Kelantan River Basin. In IOP Conference Series: Earth and Environmental Science (Vol. 476, No. 1, p. 012118). IOP Publishing.
https://doi.org/10.1088/1755-1....
25.
Salam, M., Alam, F., Hossain, M. N., Saeed, M. A., Khan, T., Zarin, K., ... & Khan, O. (2021). Assessing the drinking water quality of educational institutions at selected locations of district Swat, Pakistan. Environmental Earth Sciences, 80, 1–11.
https://doi.org/10.1007/s12665....
26.
Salam, M., Shahzadi, A., Zheng, H., Alam, F., Nabi, G., Dezhi, S., ... & Bilal, M. (2022). Effect of different environmental conditions on the growth and development of Black Soldier Fly Larvae and its utilization in solid waste management and pollution mitigation. Environmental Technology & Innovation, 28, 102649.
https://doi.org/10.1016/j.eti.....
27.
Santos, G. G., Figueiredo, C. C. D., de Oliveira, L. F., & Griebeler, N. P. (2009). Intensidade-duração-frequência de chuvas para o Estado de Mato Grosso do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 899–905.
https://doi.org/10.1590/S1415-....
28.
Senapeng, P., & Busababodhin, P. (2017). Modeling of maximum temperature in Northeast Thailand. Burapha Science Journal, 92–107.
29.
Shahzadi, A., Akhter, A. S., & Saf, B. (2013). Regional frequency analysis of annual maximum rainfall in monsoon region of Pakistan using L-moments. Pakistan Journal of Statistics and Operation Research, 9(1), 111–136.
https://doi.org/10.18187/pjsor....
30.
Villarini, G. (2012). Analyses of annual and seasonal maximum daily rainfall accumulations for Ukraine, Moldova, and Romania. International Journal of Climatology, 32(14), 2213–2226.
https://doi.org/10.1002/joc.33....
31.
Wagesho, N., & Claire, M. (2016). Analysis of rainfall intensity-duration-frequency relationship for Rwanda. Journal of Water Resource and Protection, 8(07), 706.
https://doi.org/10.4236/jwarp.....
32.
Wald, A., & Wolfowitz, J. (1943). An exact test for randomness in the non-parametric case based on serial correlation. The Annals of Mathematical Statistics, 14(4), 378–388.
33.
Wdowikowski, M., Kaźmierczak, B., & Ledvinka, O. (2016). Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin. Meteorology Hydrology and Water Management. Research and Operational Applications, 4(1), 53–63.
34.
Yuan, J., Emura, K., Farnham, C., & Alam, M. A. (2018). Frequency analysis of annual maximum hourly precipitation and determination of best fit probability distribution for regions in Japan. Urban Climate, 24, 276–286.
https://doi.org/10.1016/j.ucli....
35.
Yue, S., & Hashino, M. (2007). Probability distribution of annual, seasonal and monthly precipitation in Japan. Hydrological Sciences Journal, 52(5), 863–877.
https://doi.org/10.1623/hysj.5....
36.
Zakaria, Z. A., Shabri, A., & Ahmad, U. N. (2012). Regional frequency analysis of extreme rainfalls in the west coast of Peninsular Malaysia using partial L-moments. Water Resources Management, 26, 4417–4433.
https://doi.org/10.1007/s11269....