Biohydrogen Production from Waste Materials: Mini-review
,
 
 
 
More details
Hide details
1
Material science and engineering program, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
 
2
Bioenergy and Solar Conversion Research Group (BSCRG), College of Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
 
3
Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
 
 
Submission date: 2023-12-04
 
 
Acceptance date: 2023-12-23
 
 
Publication date: 2023-12-30
 
 
Corresponding author
Fatin Samara   

fsamara@aus.edu
 
 
Trends in Ecological and Indoor Environmental Engineering, 2023;1(1):16-23
 
KEYWORDS
ABSTRACT
Biohydrogen is a source of renewable and clean energy. Many countries are working to generate biohydrogen energy as a means of combating the present global warming trend. This review paper aims to highlight the available information on hydrogen production from municipal solid waste biomass and also highlight several factors influencing the rate of biohydrogen production and their challenges in the future. The study of hydrogen production processes was aimed at a complete understanding of modern hydrogen production technologies, both implemented in practice and under research or development. The review revealed some advantages of biological methods for producing hydrogen gas compared to chemical ones. Also, this paper identified different factors that affect the biohydrogen production process such as type of bioreactors, temperature, pH, light, nutrients. This study also brings to the surface the challenges that need attention from researchers
REFERENCES (66)
1.
Aboagye, D., Banadda, N., Kiggundu, N., & Kabenge, I. (2017). Assessment of orange peel waste availability in Ghana and potential bio-oil yield using fast pyrolysis. Renewable and Sustainable Energy Reviews, 70, 814–821. https://doi.org/10.1016/J.RSER....
 
2.
Ahmed, I. I., & Gupta, A. K. (2010). Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Applied Energy, 87(1), 101–108. https://doi.org/10.1016/J.APEN....
 
3.
Aziz, M., Darmawan, A., & Juangsa, F. B. (2021). Hydrogen production from biomasses and wastes: A technological review. International Journal of Hydrogen Energy, 46(68), 33756–33781. https://doi.org/10.1016/J.IJHY....
 
4.
Bakhtyari, A., Sakhayi, A., Moravvej, Z., & Rahimpour, M. R. (2021). Converting cyclohexanone to liquid fuel-grade products: a characterization and comparison study of hydrotreating molybdenum catalysts. Catalysis Letters, 1–18. https://doi.org/10.1007/978-1-....
 
5.
Bakonyi, P., Nemestóthy, N., Lankó, J., Rivera, I., Buitrón, G., & Bélafi-Bakó, K. (2015). Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International Journal of Hydrogen Energy, 40(4), 1690–1697. https://doi.org/10.1016/J.IJHY....
 
6.
Bakonyi, P., Nemestóthy, N., Ramirez, J., Ruiz-Filippi, G., & Bélafi-Bakó, K. (2012). Escherichia coli (XL1-BLUE) for continuous fermentation of bioH2 and its separation by polyimide membrane. International Journal of Hydrogen Energy, 37(7), 5623–5630. https://doi.org/10.1016/j.ijhy....
 
7.
Benali, M., Hamad, T., Hamad, Y., & Belkhair, A. (2019). The Hydrogen Energy Potential of Solid Waste: A Case Study of Misrata City. Advances in Biological Chemistry, 9(2), 45–53. https://doi.org/10.4236/ABC.20....
 
8.
Buitrón, G., Carrillo-Reyes, J., Morales, M., Faraloni, C., & Torzillo, G. (2017). Biohydrogen production from microalgae. In Microalgae-based biofuels and bioproducts (pp. 209–234). Woodhead Publishing. https://doi.org/10.1016/B978-0....
 
9.
Cerrillo, M., Viñas, M., & Bonmatí, A. (2017). Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions. Water Research, 110, 192–201. https://doi.org/10.1016/J.WATR....
 
10.
Chabane, D., Harel, F., Djerdir, A., Ibrahim, M., Candusso, D., Elkedim, O., & Fenineche, N. (2017). Influence of the key parameters on the dynamic behavior of the hydrogen absorption by LaNi5. International Journal of Hydrogen Energy, 42(2), 1412–1419. https://doi.org/10.1016/J.IJHY....
 
11.
da Silva Veras, T., Mozer, T. S., & da Silva César, A. (2017). Hydrogen: trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 42(4), 2018–2033. https://doi.org/10.1016/j.ijhy....
 
12.
Diaz, L. F., Eggerth, L. L., Enkhtsetseg, S. H., & Savage, G. M. (2008). Characteristics of healthcare wastes. Waste management, 28(7), 1219–1226. https://doi.org/10.1016/J.WASM....
 
13.
Elkhalifa, S., Al-Ansari, T., Mackey, H. R., & McKay, G. (2019). Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144, 310–320. https://doi.org/10.1016/J.RESC....
 
14.
Gangadhar, L., Abhishek, N., Teja, P. V. S., Daniel, T. O., Sana, S. S., Arpitha, G. R., & Nanda, A. (2021). Biohydrogen Production from Biomass. Bioenergy Research: Revisiting Latest Development, 79–104. https://doi.org/10.1007/978-98....
 
15.
Ghysels, B., Godaux, D., Matagne, R. F., Cardol, P., & Franck, F. (2013). Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis. PloS one, 8(5), e64161. https://doi.org/10.1371/journa....
 
16.
Goswami, R. K., Mehariya, S., Obulisamy, P. K., & Verma, P. (2021). Advanced microalgae-based renewable biohydrogen production systems: a review. Bioresource Technology, 320, 124301. https://doi.org/10.1016/J.BIOR....
 
17.
Guo, X. M., Trably, E., Latrille, E., Carrère, H., & Steyer, J. P. (2010). Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 35(19), 10660–10673. https://doi.org/10.1016/j.ijhy....
 
18.
Gupta, G. K., Ram, M., Bala, R., Kapur, M., & Mondal, M. K. (2018). Pyrolysis of chemically treated corncob for biochar production and its application in Cr (VI) removal. Environmental Progress & Sustainable Energy, 37(5), 1606–1617. https://doi.org/10.1002/EP.128....
 
19.
Han, F., & Wu, L. (2019). Industrial solid waste recycling in western China. Springer. https://doi.org/10.1007/978-98....
 
20.
Jabbari, B., Jalilnejad, E., Ghasemzadeh, K., & Iulianelli, A. (2021). Modeling and optimization of a membrane gas separation based bioreactor plant for biohydrogen production by CFD–RSM combined method. Journal of Water Process Engineering, 43, 102288. https://doi.org/10.1016/J.JWPE....
 
21.
Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368–7378.
 
22.
Jimenez-Llanos, J., Ramirez-Carmona, M., Rendón-Castrillón, L., & Ocampo-López, C. (2020). Sustainable biohydrogen production by Chlorella sp. microalgae: A review. International Journal of Hydrogen Energy, 45(15), 8310–8328. https://doi.org/10.1016/J.IJHY....
 
23.
Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582. https://doi.org/10.1016/j.enzm....
 
24.
Karapinar, I., Yildiz, P. G., Pamuk, R. T., & Gorgec, F. K. (2020). The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. International Journal of Hydrogen Energy, 45(5), 3524–3531.
 
25.
Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. International journal of hydrogen energy, 37(3), 2260–2266. https://doi.org/10.1016/J.IJHY....
 
26.
Kim, J. P., Kang, C. D., Park, T. H., Kim, M. S., & Sim, S. J. (2006). Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. International Journal of Hydrogen Energy, 31(11), 1585–1590. https://doi.org/10.1016/J.IJHY....
 
27.
Kim, S. H., Kumar, G., Chen, W. H., & Khanal, S. K. (2021). Renewable hydrogen production from biomass and wastes (ReBioH2-2020). Bioresource Technology, 331, 125024. https://doi.org/10.1016/J.BIOR....
 
28.
Kumar, B. R., Mathimani, T., Sudhakar, M. P., Rajendran, K., Nizami, A. S., Brindhadevi, K., & Pugazhendhi, A. (2021). A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 138, 110649. https://doi.org/10.1016/j.rser....
 
29.
Laurinavichene, T., Tolstygina, I., & Tsygankov, A. (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. Journal of Biotechnology, 114(1–2), 143–151. https://doi.org/10.1016/J.JBIO....
 
30.
Lee, K. S., Lin, P. J., & Chang, J. S. (2006). Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. International Journal of Hydrogen Energy, 31(4), 465–472. https://doi.org/10.1016/J.IJHY....
 
31.
Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920. https://doi.org/10.1016/J.BIOM....
 
32.
Lin, C. N., Wu, S. Y., Lee, K. S., Lin, P. J., Lin, C. Y., & Chang, J. S. (2007). Integration of fermentative hydrogen process and fuel cell for on-line electricity generation. International Journal of Hydrogen Energy, 32(7), 802–808. https://doi.org/10.1016/j.ijhy....
 
33.
Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39(11), 4317–4320. https://doi.org/10.1021/ES0502....
 
34.
Liu, H., Hu, H., Chignell, J., & Fan, Y. (2010). Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels, 1(1), 129–142. https://doi.org/10.4155/BFS.09....
 
35.
Liu, W., Sun, L., Li, Z., Fujii, M., Geng, Y., Dong, L., & Fujita, T. (2020). Trends and future challenges in hydrogen production and storage research. Environmental Science and Pollution Research, 27, 31092–31104. https://doi.org/10.1007/S11356....
 
36.
Mahdisoozani, H., Mohsenizadeh, M., Bahiraei, M., Kasaeian, A., Daneshvar, A., Goodarzi, M., & Safaei, M. R. (2019). Performance enhancement of internal combustion engines through vibration control: state of the art and challenges. Applied Sciences, 9(3), 406. https://doi.org/10.3390/APP903....
 
37.
Moeller, D. W. (2005). Front Matter. In Environmental Health: Third Edition (pp. i–vi). Harvard University Press. https://doi.org/10.2307/j.ctvj....
 
38.
Muylaert, K., Bastiaens, L., Vandamme, D., & Gouveia, L. (2017). Harvesting of microalgae: Overview of process options and their strengths and drawbacks. Microalgae-based Biofuels and Bioproducts, 113–132. https://doi.org/10.1016/B978-0....
 
39.
Nabgan, W., Abdullah, T. A. T., Nabgan, B., Jalil, A. A., Nordin, A. H., Ul-Hamid, A., ... & Ikram, M. (2021). Catalytic biohydrogen production from organic waste materials: a literature review and bibliometric analysis. International Journal of Hydrogen Energy, 46(60), 30903–30925.
 
40.
Nagarajan, D., Dong, C. D., Chen, C. Y., Lee, D. J., & Chang, J. S. (2021). Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnology Journal, 16(5), 2000124. https://doi.org/10.1002/BIOT.2....
 
41.
Nagarajan, D., Lee, D. J., Kondo, A., & Chang, J. S. (2017). Recent insights into biohydrogen production by microalgae–From biophotolysis to dark fermentation. Bioresource Technology, 227, 373–387. https://doi.org/10.1016/J.BIOR....
 
42.
Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International journal of hydrogen energy, 46(13), 8885–8905. https://doi.org/10.1016/J.IJHY....
 
43.
Olabi, A. G., Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528. https://doi.org/10.1016/J.IJHY....
 
44.
Palomo-Briones, R., Trably, E., López-Lozano, N. E., Celis, L. B., Méndez-Acosta, H. O., Bernet, N., & Razo-Flores, E. (2018). Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Applied Microbiology and Biotechnology, 102, 2465–2475. https://doi.org/10.1007/S00253....
 
45.
Park, J. H., Park, J. H., Sim, Y. B., Kim, S. H., & Park, H. D. (2019). Formation of a dynamic membrane altered the microbial community and metabolic flux in fermentative hydrogen production. Bioresource Technology, 282, 63–68. https://doi.org/10.1016/J.BIOR....
 
46.
Pawar, A. A., Karthic, A., Lee, S., Pandit, S., & Jung, S. P. (2022). Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environmental Engineering Research, 27(1). https://doi.org/10.4491/EER.20....
 
47.
Puig-Arnavat, M., Bruno, J. C., & Coronas, A. (2012). Modified thermodynamic equilibrium model for biomass gasification: a study of the influence of operating conditions. Energy & Fuels, 26(2), 1385–1394. https://doi.org/10.1021/EF2019....
 
48.
Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and sustainable energy reviews, 66, 137–162. https://doi.org/10.1016/J.RSER....
 
49.
Ram, M., & Mondal, M. K. (2019). Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification. Energy, 178, 522–529. https://doi.org/10.1016/J.ENER....
 
50.
Rashid, N., Rehman, M. S. U., Memon, S., Rahman, Z. U., Lee, K., & Han, J. I. (2013). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579. https://doi.org/10.1016/J.RSER....
 
51.
Rawoof, S. A. A., Kumar, P. S., Vo, D. V. N., & Subramanian, S. (2021). Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: a review. Environmental Chemistry Letters, 19, 1043–1063. https://doi.org/10.1007/S10311....
 
52.
Sagir, E., & Alipour, S. (2021). Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges. Renewable and Sustainable Energy Reviews, 141, 110796. https://doi.org/10.1016/J.RSER....
 
53.
Salam, M. A., Ahmed, K., Akter, N., Hossain, T., & Abdullah, B. (2018). A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International Journal of Hydrogen Energy, 43(32), 14944–14973. https://doi.org/10.1016/j.ijhy....
 
54.
Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601–612.
 
55.
Saravanan, A., Kumar, P. S., Khoo, K. S., Show, P. L., Carolin, C. F., Jackulin, C. F., ... & Chang, J. S. (2021). Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresource Technology, 342, 126021.
 
56.
Sharma, A. K., Ghodke, P. K., Manna, S., & Chen, W. H. (2021). Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresource Technology, 342, 126057. https://doi.org/10.1016/J.BIOR....
 
57.
Sharma, P., Gupta, B., Pandey, M., Bisen, K. S., & Baredar, P. (2021). Downdraft biomass gasification: A review on concepts, designs analysis, modelling and recent advances. Materials Today: Proceedings, 46, 5333–5341. https://doi.org/10.1016/J.MATP....
 
58.
Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: current perspectives and the way forward. International Journal of Hydrogen Energy, 37(20), 15616–15631. https://doi.org/10.1016/J.IJHY....
 
59.
Show, K. Y., Yan, Y., Ling, M., Ye, G., Li, T., & Lee, D. J. (2018). Hydrogen production from algal biomass–advances, challenges and prospects. Bioresource Technology, 257, 290–300. https://doi.org/10.1016/J.BIOR....
 
60.
Show, K. Y., Yan, Y., Zong, C., Guo, N., Chang, J. S., & Lee, D. J. (2019). State of the art and challenges of biohydrogen from microalgae. Bioresource Technology, 289, 121747. https://doi.org/10.1016/J.BIOR....
 
61.
Su, C., Liu, Y., Yang, X., & Li, H. (2020). Effect of hydraulic retention time on biohydrogen production from glucose in an internal circulation reactor. Energy & Fuels, 34(3), 3244–3249. https://doi.org/10.1021/ACS.EN....
 
62.
Sun, Y., He, J., Yang, G., Sun, G., & Sage, V. (2019). A review of the enhancement of bio-hydrogen generation by chemicals addition. Catalysts, 9(4), 353. https://doi.org/10.3390/CATAL9....
 
63.
Uyar, B., Eroglu, I., Yücel, M., Gündüz, U., & Türker, L. (2007). Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy, 32(18), 4670–4677. https://doi.org/10.1016/J.IJHY....
 
64.
Xiong, S., He, J., Yang, Z., Guo, M., Yan, Y., & Ran, J. (2020). Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture. Energy, 194, 116831. https://doi.org/10.1016/J.ENER....
 
65.
Yong, Y. S., & Rasid, R. A. (2022). Process simulation of hydrogen production through biomass gasification: Introduction of torrefaction pre-treatment. International Journal of Hydrogen Energy, 47(100), 42040–42050. https://doi.org/10.1016/J.IJHY....
 
66.
Zhang, B., Zhang, S. X., Yao, R., Wu, Y. H., & Qiu, J. S. (2021). Progress and prospects of hydrogen production: Opportunities and challenges. Journal of Electronic Science and Technology, 19(2), 100080. https://doi.org/10.1016/j.jnle....
 
Journals System - logo
Scroll to top