Integrated Geotechnical Modelling and Real-time Analysis for Predicting Earthquake-Induced Landslides and Rockfalls in the East African Fracture Zone
 
More details
Hide details
1
Department of Civil Engineering, Faculty of Engineering & Technology, University of Botswana, Gaborone, Botswana
 
2
Department of Civil Engineering, Faculty of Engineering, National University of Malaysia (UKM), Selangor, Malaysia
 
3
Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, P.O Box 706, Jazan, 45142, Saudi Arabia
 
4
Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
 
 
Submission date: 2024-09-17
 
 
Acceptance date: 2024-10-16
 
 
Publication date: 2024-10-30
 
 
Corresponding author
Ali Akbar Firoozi   

a.firoozi@gmail.com
 
 
Khaled Aati
kaati@jazanu.edu.sa
 
 
Trends in Ecological and Indoor Environmental Engineering, 2024;2(3):1-19
 
KEYWORDS
ABSTRACT
Background:
The East African Fracture Zone (EAFZ) stands as a testament to the dynamic forces of Earth, marked by heightened seismic activity that frequently triggers geotechnical disasters such as landslides and rockfalls. Traditionally, the study of earthquake-induced geological risks has been reactive, with a focus on post-incident analysis. While significant advances have been made in spatial analysis and risk mapping, the capabilities for real-time prediction and proactive mitigation are still limited.

Objectives:
Current study presents an approach to predicting earthquake-induced landslides and rockfalls in the EAFZ. The aim is to change the perception of the problem by viewing disasters as manageable risks and informing decision-making in urban planning and disaster mitigation strategies.

Methods:
A combination of geotechnical engineering, remote sensing, artificial intelligence and machine learning, and socio-economic analysis were used to develop a holistic software framework that solves the complex problem of earthquake prediction without any problems.

Results:
A software model has been developed that includes a dynamic learning component that refines its predictions with new data, allowing for a deeper understanding of geological subtleties and socio-economic impacts. Considerable attention is paid to the tangible consequences of landslides and rockfalls, including human, property and economic losses. Despite the inevitable challenges of data accuracy and natural unpredictability, the proposed approach opens up new possibilities for proactive disaster management. The results demonstrate a transformational step in data-driven geotechnics and highlight the global applicability of the methods proposed in this work.

Conclusion:
In this investigation, was taken a pioneering stride in the realm of geotechnical hazard analysis and prediction, focusing on the complex terrains of the East African Fracture Zone (EAFZ). The results provided critical insights into the dynamics of geotechnical hazards in the EAFZ, laying the foundation for future innovations and enhanced safety measures in vulnerable communities.
REFERENCES (63)
1.
Aguiar, G., Krawczyk, B., & Cano, A. (2024). A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. Machine learning, 113(7), 4165–4243. https://doi.org/10.1007/s10994....
 
2.
Amah, E. M., Katte, V. Y., Ghogomu, R. T., & Kamgang, V. K. (2022). An Assessment of Landslides along Mountain Forest Roads: Bamenda Ring Road Segment through Bafut and Befang Forests on the Cameroon Volcanic Line. American Journal of Environment Studies, 5(1), 60–86. https://doi.org/10.47672/ajes.....
 
3.
Ansuini, A., Laio, A., Macke, J. H., & Zoccolan, D. (2019). Intrinsic dimension of data representations in deep neural networks. Advances in Neural Information Processing Systems, 32. Available: https://proceedings.neurips.cc....
 
4.
Antwi-Agyakwa, K. T., Afenyo, M. K., & Angnuureng, D. B. (2023). Know to predict, forecast to warn: a review of flood risk prediction tools. Water, 15(3), 427. https://doi.org/10.3390/w15030....
 
5.
Apostolopoulos, D., & Nikolakopoulos, K. (2021). A review and meta-analysis of remote sensing data, GIS methods, materials and indices used for monitoring the coastline evolution over the last twenty years. European Journal of Remote Sensing, 54(1), 240–265. https://doi.org/10.1080/227972....
 
6.
Beattie, J. R., & Esmonde-White, F. W. (2021). Exploration of principal component analysis: deriving principal component analysis visually using spectra. Applied Spectroscopy, 75(4), 361–375. https://doi.org/10.1177/000370....
 
7.
Bera, A., Mukhopadhyay, B. P., & Das, D. (2019). Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96, 935–959. https://doi.org/10.1007/s11069....
 
8.
Bezak, N., & Mikoš, M. (2021). Changes in the rainfall event characteristics above the empirical global rainfall thresholds for landslide initiation at the pan-European level. Landslides, 18(5), 1859–1873. https://doi.org/10.1007/s10346....
 
9.
Bommer, J. J. (2022). Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty. Bulletin of Earthquake Engineering, 20(6), 2825–3069. https://doi.org/10.1007/s10518....
 
10.
Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635–676. https://doi.org/10.1007/PL0001....
 
11.
Broeckx, J., Maertens, M., Isabirye, M., Vanmaercke, M., Namazzi, B., Deckers, J., ... & Poesen, J. (2019). Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides, 16, 571–584. https://doi.org/10.1007/s10346....
 
12.
Calamita, G., Gallipoli, M. R., Gueguen, E., Sinisi, R., Summa, V., Vignola, L., ... & Perrone, A. (2023). Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Engineering Geology, 313, 106984. https://doi.org/10.1016/j.engg....
 
13.
Ching, J., & Chen, Y. C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. Journal of Engineering Mechanics, 133(7), 816–832. https://doi.org/10.1061/(ASCE)...).
 
14.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., ... & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73, 209–263. https://doi.org/10.1007/s10064....
 
15.
Craig, T. J., & Jackson, J. A. (2021). Variations in the seismogenic thickness of East Africa. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020754. https://doi.org/10.1029/2020JB....
 
16.
Dagdelenler, G., Ercanoglu, M., & Sonmez, H. (2021). Semi-automatic Landslide Inventory Mapping with Multiresolution Segmentation Process: A Case Study from Ulus District (Bartin, NW Turkey). Understanding and Reducing Landslide Disaster Risk: Volume 2 From Mapping to Hazard and Risk Zonation 5th, 87–93. https://doi.org/10.1007/978-3-....
 
17.
Devassy, B. M., & George, S. (2020). Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE. Forensic Science International, 311, 110194. https://doi.org/10.1016/j.fors....
 
18.
Dierickx, F. (2014). Socio-economic consequences of landslides in Mount Elgon region (Uganda). Available: https://www.researchgate.net/p....
 
19.
Fan, X., Scaringi, G., Domènech, G., Yang, F., Guo, X., Dai, L., ... & Huang, R. (2019). Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth System Science Data, 11(1), 35–55. https://doi.org/10.5194/essd-1....
 
20.
Ferlisi, S., Gullà, G., Nicodemo, G., & Peduto, D. (2019). A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy. Euro-Mediterranean Journal for Environmental Integration, 4, 1–15. https://doi.org/10.1007/s41207....
 
21.
Franklin, S. E. (2020). Interpretation and use of geomorphometry in remote sensing: a guide and review of integrated applications. International Journal of Remote Sensing, 41(19), 7700–7733. https://doi.org/10.1080/014311....
 
22.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232. https://www.jstor.org/stable/2....
 
23.
Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702. https://doi.org/10.1016/j.rse.....
 
24.
Gomez, C., Allouis, T., Lissak, C., Hotta, N., Shinohara, Y., Hadmoko, D. S., ... & Rahardianto, T. (2021). High-resolution point-cloud for landslides in the 21st century: from data acquisition to new processing concepts. Understanding and Reducing Landslide Disaster Risk: Volume 6 Specific Topics in Landslide Science and Applications 5th, 199–213. https://doi.org/10.1007/978-3-....
 
25.
Gómez, D., García, E. F., & Aristizábal, E. (2023). Spatial and temporal landslide distributions using global and open landslide databases. Natural Hazards, 117(1), 25–55. https://doi.org/10.1007/s11069....
 
26.
Jiang, Y., Huang, S., Wu, H., Yang, Z., Nai, W., & Li, D. (2022, March). Ridge regression based on t-distribution marine predators algorithm. In 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC) (Vol. 6, pp. 1900-1904). IEEE. https://doi.org/10.1109/ITOEC5....
 
27.
Kasai, M., & Yamada, T. (2019). Topographic effects on frequency-size distribution of landslides triggered by the Hokkaido Eastern Iburi Earthquake in 2018. Earth, Planets and Space, 71, 1–12. https://doi.org/10.1186/s40623....
 
28.
Kavzoglu, T., & Teke, A. (2022). Predictive Performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arabian Journal for Science and Engineering, 47(6), 7367–7385. https://doi.org/10.1007/s13369....
 
29.
Konstantinov, A. V., & Utkin, L. V. (2021). Interpretable machine learning with an ensemble of gradient boosting machines. Knowledge-Based Systems, 222, 106993. https://doi.org/10.1016/j.knos....
 
30.
Kristensen, L., Czekirda, J., Penna, I., Etzelmüller, B., Nicolet, P., Pullarello, J. S., ... & Abellan, A. (2021). Movements, failure and climatic control of the Veslemannen rockslide, Western Norway. Landslides, 18, 1963-1980. https://doi.org/10.1007/s10346....
 
31.
Lin, L., Chen, G., Shi, W., Jin, J., Wu, J., Huang, F., ... & Zhang, Y. (2022). Spatiotemporal evolution pattern and driving mechanisms of landslides in the wenchuan earthquake-affected region: A case study in the Bailong river basin, China. Remote Sensing, 14(10), 2339. https://doi.org/10.3390/rs1410....
 
32.
Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of California Press. Available: https://www.cs.cmu.edu/~bhiksh....
 
33.
Massey, C. I., Townsend, D. T., Lukovic, B., Morgenstern, R., Jones, K., Rosser, B., & de Vilder, S. (2020). Landslides triggered by the MW 7.8 14 November 2016 Kaikōura earthquake: an update. Landslides, 17, 2401–2408. https://doi.org/10.1007/s10346....
 
34.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons. Available: http://sutlib2.sut.ac.th/sut_c....
 
35.
Nguyen, B. Q. V., & Kim, Y. T. (2021). Regional-scale landslide risk assessment on Mt. Umyeon using risk index estimation. Landslides, 18(7), 2547–2564. https://doi.org/10.1007/s10346....
 
36.
Novellino, A., Cesarano, M., Cappelletti, P., Di Martire, D., Di Napoli, M., Ramondini, M., ... & Calcaterra, D. (2021). Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques. Catena, 203, 105317. https://doi.org/10.1016/j.cate....
 
37.
Obwocha, E. B., Ramisch, J. J., Duguma, L., & Orero, L. (2022). The relationship between climate change, variability, and food security: understanding the impacts and building resilient food systems in west pokot county, Kenya. Sustainability, 14(2), 765. https://doi.org/10.3390/su1402....
 
38.
Overberg, F. A., Böttcher, P. C., Witthaut, D., & Morgenthaler, S. (2023). Emipy: An open-source Python-based tool to analyze industrial emissions in Europe. SoftwareX, 23, 101458. https://doi.org/10.1016/j.soft....
 
39.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., ... & Vigano, D. (2014). OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/022013....
 
40.
Phoon, K. K., Ching, J., & Cao, Z. (2022). Unpacking data-centric geotechnics. Underground Space, 7(6), 967–989. https://doi.org/10.1016/j.unds....
 
41.
Regmi, A. D., & Agrawal, N. (2022). A simple method for landslide risk assessment in the Rivière Aux Vases basin, Quebec, Canada. Progress in Disaster Science, 16, 100247. https://doi.org/10.1016/j.pdis....
 
42.
Rivera-Lopez, R., Canul-Reich, J., Mezura-Montes, E., & Cruz-Chávez, M. A. (2022). Induction of decision trees as classification models through metaheuristics. Swarm and Evolutionary Computation, 69, 101006. https://doi.org/10.1016/j.swev....
 
43.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256....
 
44.
Rymarczyk, T., Kozłowski, E., Kłosowski, G., & Niderla, K. (2019). Logistic regression for machine learning in process tomography. Sensors, 19(15), 3400. https://doi.org/10.3390/s19153....
 
45.
Saha, S., Saha, A., Hembram, T. K., Pradhan, B., & Alamri, A. M. (2020). Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Applied Sciences, 10(11), 3772. https://doi.org/10.3390/app101....
 
46.
Seabold, S., & Perktold, J. (2010). Statsmodels: econometric and statistical modeling with python. SciPy, 7(1), 92–96.
 
47.
Shaira, H., Naik, P. R., Pracheth, R., Nirgude, A. S., Nandy, S., Hiba, M. M., & Karthika, S. (2020). Epidemiological profile and mapping geographical distribution of road traffic accidents reported to a tertiary care hospital, Mangaluru using quantum geographic information system (QGIS). Journal of family medicine and primary care, 9(7), 3652–3656. https://doi.org/10.4103%2Fjfmp....
 
48.
Shano, L., Raghuvanshi, T. K., & Meten, M. (2021). Landslide hazard zonation using logistic regression model: The case of Shafe and Baso catchments, Gamo highland, Southern Ethiopia. Geotechnical and Geological Engineering, 1–19. https://doi.org/10.1007/s10706....
 
49.
Shao, X., & Xu, C. (2022). Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art. Natural Hazards Research, 2(3), 172–182. https://doi.org/10.1016/j.nhre....
 
50.
Shiiba, N., Singh, P., Charan, D., Raj, K., Stuart, J., Pratap, A., & Maekawa, M. (2023). Climate change and coastal resiliency of Suva, Fiji: a holistic approach for measuring climate risk using the climate and ocean risk vulnerability index (CORVI). Mitigation and Adaptation Strategies for Global Change, 28(2), 9. https://doi.org/10.1007/s11027....
 
51.
Tang, C., Wang, H., Wang, Z., Zeng, X., Yan, H., & Xiao, Y. (2021). An improved OPTICS clustering algorithm for discovering clusters with uneven densities. Intelligent Data Analysis, 25(6), 1453–1471. https://doi.org/10.3233/IDA-20....
 
52.
Tran, M. K., Panchal, S., Chauhan, V., Brahmbhatt, N., Mevawalla, A., Fraser, R., & Fowler, M. (2022). Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery. International Journal of Energy Research, 46(2), 786–794. https://doi.org/10.1002/er.720....
 
53.
Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273–297. https://doi.org/10.1007/BF0099....
 
54.
Wadoux, A. M. C., Heuvelink, G. B., De Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. https://doi.org/10.1016/j.ecol....
 
55.
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A., Dai, L., ... & Huang, R. (2019). Coseismic landslides triggered by the 2018 Hokkaido, Japan (M w 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides, 16, 1551–1566. https://doi.org/10.1007/s10346....
 
56.
Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-output least-squares support vector regression machines. Pattern recognition letters, 34(9), 1078–1084. https://doi.org/10.1016/j.patr....
 
57.
Xu, W. J., Wang, L., & Cheng, K. (2022). The failure and river blocking mechanism of large-scale anti-dip rock landslide induced by earthquake. Rock Mechanics and Rock Engineering, 55(8), 4941–4961. https://doi.org/10.1007/s00603....
 
58.
Zangmene, F. L., Ngapna, M. N., Ateba, M. C. B., Mboudou, G. M. M., Defo, P. L. W., Kouo, R. T., ... & Owona, S. (2023). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Bafoussam-Dschang region (West Cameroon). Advances in Space Research, 71(12), 5282–5301. https://doi.org/10.1016/j.asr.....
 
59.
Zevgolis, I. E., Theocharis, A. I., Deliveris, A. V., Koukouzas, N. C., Roumpos, C., & Marshall, A. M. (2021). Geotechnical characterization of fine-grained spoil material from surface coal mines. Journal of Geotechnical and Geoenvironmental Engineering, 147(7), 04021050. https://doi.org/10.1061/(ASCE)....
 
60.
Zhang, Y., Gao, J., & Zhou, H. (2020, February). Breeds classification with deep convolutional neural network. In Proceedings of the 2020 12th international conference on machine learning and computing (pp. 145–151). https://doi.org/10.1145/338397....
 
61.
Zhang, Y., Li, Y. E., & Ku, T. (2020). A modified seismic reflection approach for engineering geology investigation in fractured rock zones. Engineering Geology, 270, 105592. https://doi.org/10.1016/j.engg....
 
62.
Zhao, Y., Wang, R., Jiang, Y., Liu, H., & Wei, Z. (2019). GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Engineering Geology, 259, 105147. https://doi.org/10.1016/j.engg....
 
63.
Zhou, S., Zhou, S., & Tan, X. (2020). Nationwide susceptibility mapping of landslides in Kenya using the fuzzy analytic hierarchy process model. Land, 9(12), 535. https://doi.org/10.3390/land91....
 
Journals System - logo
Scroll to top