Life Cycle Assessment of Bioenergy Systems versus Fossil Fuel Alternatives: Insights for Sustainable Energy Transitions in Nigeria
 
More details
Hide details
1
Department of Biochemistry, Faculty of Biosciences, Federal University Wukari, Taraba State, Nigeria
 
2
Department of Biochemistry, Faculty of Basic Medical Sciences, University of Lagos,Idi-Araba, Nigeria
 
3
Departments of Chemical Engineering, School of Engineering and Engineering Technology Federal University of Technology, Owerri, Nigeria
 
4
Department of Electrical and Electronics Engineering, Faculty of Engineering University of Maiduguri, Maiduguri, Borno State, Nigeria
 
5
Department of Mechanical Engineering, College of Engineering, Bells University of Technology, Ota, Ogun State, Nigeria
 
6
Department of Chemistry, Faculty of Science, Eastern New Mexico University, Portales, United States
 
7
Department of Computer Science, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River, Nigeria
 
8
Department of Computer Science, Faculty of Science and Technology, Babcock University, Ilisan-Remo Ogun State, Nigeria
 
9
Department of Chemical/Petrochemical Engineering, Faculty of Engineering, Akwa Ibom State University, Akwa Ibom, Nigeria
 
10
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, New York, United States
 
 
Submission date: 2025-04-18
 
 
Acceptance date: 2025-06-20
 
 
Publication date: 2025-06-30
 
 
Corresponding author
Micheal Abimbola Oladosu   

mikeoladosu@gmail.com
 
 
Trends in Ecological and Indoor Environmental Engineering, 2025;3(2):46-59
 
KEYWORDS
ABSTRACT
Background:
The pressing necessity to address climate change has positioned energy decarbonization at the forefront of global sustainability initiatives. Decarbonization entails diminishing carbon intensity throughout the energy value chain by transitioning from fossil fuels to low- or zero-carbon alternatives, including renewable energy, green hydrogen, and bioenergy. Nigeria, despite its abundant fossil fuel resources, experiences persistent energy instability marked by inconsistent electricity delivery, low access rates, and excessive reliance on petroleum goods. The incorporation of renewable energy sources, including solar, wind, biomass, and small hydropower, has become an essential strategy for attaining energy security, sustainability, and climate resilience. Investing in renewable energy diminishes reliance on fossil fuels while fostering job development, energy fairness, and environmental conservation.

Objectives:
The main objective of the current study is to comparison of environmental impacts through life cycle assessment (LCA) of two energy systems in Nigeria, namely bioenergy systems using locally available biomass as agricultural waste and traditional fossil fuel-based systems. It is expected that the study will identify key features of the two energy production approaches and provide a scientifically sound basis for the selection of cleaner energy sources, thereby facilitating Nigeria's transition to a low-carbon economy.

Methods:
The following databases were used in searching for secondary data used for this study: Scopus, Web of Science, ScienceDirect, Google Scholar, African Journals Online (AJOL). The keywords used for this search were: "Lifecycle Assessment", "LCA", "bioenergy", "biomass", "fossil fuels", "Nigeria", "sustainable energy", "greenhouse gas emissions", "renewable energy Nigeria". The inclusion criteria were considered in the course of this review: Studies focused on Nigeria or similar Sub-Saharan African contexts, Peer-reviewed articles, LCA studies, government and NGO reports, Publications in English from 2000 to 2024. The following exclusion criteria were used for this review: Non-peer-reviewed blogs, editorials, and news articles, Studies lacking clear LCA methodology.

Results:
The findings underscore the critical role of lifecycle thinking in guiding energy policy and project implementation in developing countries facing the dual challenge of expanding energy access and combating climate change.

Conclusion:
The lifecycle assessment of bioenergy systems compared to fossil fuel alternatives provides critical insights for shaping sustainable energy transitions in Nigeria. While fossil fuels have historically powered the nation's economy, their environmental and health impacts underscore the urgent need for cleaner alternatives. Bioenergy, with its potential to reduce greenhouse gas emissions, promote rural development, and utilize locally available biomass resources, presents a promising pathway toward sustainability.
REFERENCES (76)
1.
Abdul-Manan, A. F. (2017). Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP). Energy Policy, 104, 56–65. https://doi.org/10.1016/j.enpo....
 
2.
Achten, W. M., Vandenbempt, P., Almeida, J., Mathijs, E., & Muys, B. (2010). Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon. Environmental Science & Technology, 44(12), 4809–4815. https://doi.org/10.1021/es1000....
 
3.
Acobta, A. N. B., Ayompe, L. M., Wandum, L. M., Tambasi, E. E., Muyuka, D. S., & Egoh, B. N. (2023). Greenhouse gas emissions along the value chain in palm oil producing systems: A case study of Cameroon. Cleaner and Circular Bioeconomy, 6, 100057. https://doi.org/10.1016/j.clcb....
 
4.
Adepoju, O. O., David, L. O., & Nwulu, N. I. (2022). Analysing the impact of human capital on renewable energy penetration: a bibliometric reviews. Sustainability, 14(14), 8852. https://doi.org/10.3390/su1414....
 
5.
Adeshina, M. A., Ogunleye, A. M., Suleiman, H. O., Yakub, A. O., Same, N. N., Suleiman, Z. A., & Huh, J. S. (2024). From potential to power: Advancing Nigeria’s energy sector through renewable integration and policy reform. Sustainability, 16(20), 8803. https://doi.org/10.3390/su1620....
 
6.
Adeyemi, O. E. (2023). Barley Yield and Protein Response to Nitrogen and Sulfur Fertilizer Rates and Application Timing (Master's thesis, University of Idaho). University of Idaho ProQuest Dissertations & Theses,  2023. 30575251. Available: https://www.proquest.com/openv....
 
7.
Ahmed, I., Zia, M. A., Afzal, H., Ahmed, S., Ahmad, M., Akram, Z., ... & Iqbal, H. M. (2021). Socio-economic and environmental impacts of biomass valorisation: A strategic drive for sustainable bioeconomy. Sustainability, 13(8), 4200. https://doi.org/10.3390/su1308....
 
8.
Ahmethodzic, L., & Music, M. (2021). Comprehensive review of trends in microgrid control. Renewable Energy Focus, 38, 84–96. https://doi.org/10.1016/j.ref.....
 
9.
Aisien, F. A., & Aisien, E. T. (2020). Biogas from cassava peels waste. Detritus, 10(6), 100–108. https://doi.org/10.31025/2611-....
 
10.
Akinbami, J. F. K. (2001). Renewable energy resources and technologies in Nigeria: present situation, future prospects and policy framework. Mitigation and Adaptation Strategies for Global Change, 6, 155–182. https://doi.org/10.1023/A:1011....
 
11.
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42. https://doi.org/10.3390/toxics....
 
12.
Anyaoha, K. E., & Zhang, L. (2021). Renewable energy for environmental protection: Life cycle inventory of Nigeria's palm oil production. Resources, Conservation and Recycling, 174, 105797. https://doi.org/10.1016/j.resc....
 
13.
Anyaoha, K. E., & Zhang, L. (2023). Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria. Environment, Development and Sustainability, 25(5), 4575–4595. https://doi.org/10.1007/s10668....
 
14.
Archer, S. A., Murphy, R. J., & Steinberger-Wilckens, R. (2018). Methodological analysis of palm oil biodiesel life cycle studies. Renewable and Sustainable Energy Reviews, 94, 694–704. https://doi.org/10.1016/j.rser....
 
15.
Arguelles-Arguelles, A., Amezcua-Allieri, M. A., & Ramírez-Verduzco, L. F. (2021). Life cycle assessment of green diesel production by hydrodeoxygenation of palm oil. Frontiers in Energy Research, 9, 690725. https://doi.org/10.3389/fenrg.....
 
16.
Bieker, G. (2021). A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. Available: https://www.team-bhp.com/forum....
 
17.
Bierbaum, R., Cowie, A., Gorsevski, V., & Sims, R. E. H. (2015). Optimizing the global environmental benefits of transport biofuels. Scientific and Technical Advisory Panel, pp. 1–80. Available: http://hdl.handle.net/10179/11....
 
18.
Bruckner, T., Bashmakov, I. A., Mulugetta, Y., Chum, H., De la Vega Navarro, A., Edmonds, J., ... & Zhang, X. (2014). Energy systems. In: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5; Cambridge University Press. Available: https://www.ipcc.ch/site/asset....
 
19.
Castanheira, É. G., & Freire, F. (2017). Environmental life cycle assessment of biodiesel produced with palm oil from Colombia. The International Journal of Life Cycle Assessment, 22, 587–600. https://doi.org/10.1007/s11367....
 
20.
Chatterjee, R., Sharma, V., & Mukherjee, S. (2015). The environmental impacts and allocation methods used in LCA studies of vegetable oil-based bio-diesels. Waste and Biomass Valorization, 6, 579–603. https://doi.org/10.1007/s12649....
 
21.
Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology, 102(2), 437–451. https://doi.org/10.1016/j.bior....
 
22.
Choo, Y. M., Muhamad, H., Hashim, Z., Subramaniam, V., Puah, C. W., & Tan, Y. (2011). Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. The International Journal of Life Cycle Assessment, 16(7), 669–681. https://doi.org/10.1007/s11367....
 
23.
Delivand, M. K., & Gnansounou, E. (2013). Life cycle environmental impacts of a prospective palm-based biorefinery in Pará State-Brazil. Bioresource Technology, 150, 438–446. https://doi.org/10.1016/j.bior....
 
24.
Emmanuel, U. K., & Grace, E. C. (2022). Metal Analysis and Fuel Potentials of Irvingia gabonensis. Journal of Biological Research and Biotechnology, 20(3), 1712–1720. https://doi.org/10.4314/br.v20....
 
25.
Fathima, A. A., Sanitha, M., Tripathi, L., & Muiruri, S. (2023). Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food and Energy Security, 12(1), e380. https://doi.org/10.1002/fes3.3....
 
26.
Federal Government of Nigeria (FGN). (2021). Nigeria's pathway to achieve carbon neutrality by 2060. Available: https://energytransition.gov.n....
 
27.
Fthenakis, V. M., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. Solar Energy, 85(8), 1609–1628. https://doi.org/10.1016/j.sole....
 
28.
Ghiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Manara - Qatar Research Repository. Journal Contribution. https://doi.org/10.1016/j.jcou....
 
29.
Guo, H., Cui, J., & Li, J. (2022). Biomass power generation in China: Status, policies and recommendations. Energy Reports, 8(13), 687–696. https://doi.org/10.1016/j.egyr....
 
30.
Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of life support systems (EOLSS). Forerunner Volume-‘Perspectives and overview of life support systems and sustainable development, 76.
 
31.
Husain, Z., Zainal, Z. A., & Abdullah, M. Z. (2003). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-....
 
32.
IEA (2021), Net Zero by 2050, IEA, Paris. Available: https://www.iea.org/reports/ne....
 
33.
Igbosoroeze, C. A., & Okojie, L. O. Environmental Impacts of Oil Palm Production and Processing in South West, Nigeria. http://dx.doi.org/10.2139/ssrn....
 
34.
Igbum, O. G., Eloka-Eboka, A. C., & Adoga, S. (2019). Feasibility study of biogas energy generation from refuse dump in a community-based distribution in Nigeria. International Journal of Low-Carbon Technologies, 14(2), 227–233. https://doi.org/10.1093/ijlct/....
 
35.
International Renewable Energy Agency (IRENA). (2020). Global renewables outlook: Energy transformation 2050. Available: https://www.irena.org/publicat....
 
36.
Isah, M. E., Wasah, A., & Matsubae, K. (2025). Life cycle assessment research and application in Nigeria. The International Journal of Life Cycle Assessment, 30(5), 880–895. https://doi.org/10.1007/s11367....
 
37.
Ishola, F., Adelekan, D., Mamudu, A., Abodunrin, T., Aworinde, A., Olatunji, O., & Akinlabi, S. (2020). Biodiesel production from palm olein: A sustainable bioresource for Nigeria. Heliyon, 6(4). https://doi.org/10.1016/j.heli....
 
38.
Izah, S. C., Angaye, T. C., & Ohimain, E. I. (2016). Environmental impacts of oil palm processing in Nigeria. Biotechnological Research, 2(3), 132–141.
 
39.
Jing, Y. Y., Bai, H., Wang, J. J., & Liu, L. (2012). Life cycle assessment of a solar combined cooling heating and power system in different operation strategies. Applied Energy, 92, 843–853. https://doi.org/10.1016/j.apen....
 
40.
Kaliyan, N., Morey, R. V., & Tiffany, D. G. (2011). Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants. Biomass and Bioenergy, 35(3), 1103–1113. https://doi.org/10.1016/j.biom....
 
41.
Khan, H., Khan, I., & Binh, T. T. (2020). The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: A panel quantile regression approach. Energy Reports, 6, 859–867. https://doi.org/10.1016/j.egyr....
 
42.
Kittithammavong, V., Arpornpong, N., Charoensaeng, A., & Khaodhiar, S. (2014, March). Environmental life cycle assessment of palm oil-based biofuel production from transesterification: greenhouse gas, energy and water balances. In A Presentation at International Conference on Advances in Engineering and Technology (ICAET’2014), March (pp. 29–30). http://dx.doi.org/10.15242/IIE... 6.
 
43.
Kospa, H. S. D., Lulofs, K. R., & Asdak, C. (2017). Estimating water footprint of palm oil production in PTP Mitra Ogan Baturaja, South Sumatera. International Journal on Advanced Science, Engineering and Information Technology, 7(6), 2115–2121. https://doi.org/10.18517/ijase....
 
44.
Krajang, M., Malairuang, K., Sukna, J., Rattanapradit, K., & Chamsart, S. (2021). Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Biotechnology for Biofuels, 14(1), 68. https://doi.org/10.1186/s13068....
 
45.
Kusin, F. M., Akhir, N. I. M., Mohamat-Yusuff, F., & Awang, M. (2017). Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia. Environmental Science and Pollution Research, 24(6), 5293–5304. https://doi.org/10.1007/s11356....
 
46.
Manik, Y., & Halog, A. (2013). A meta‐analytic review of life cycle assessment and flow analyses studies of palm oil biodiesel. Integrated Environmental Assessment and Management, 9(1), 134–141. https://doi.org/10.1002/ieam.1....
 
47.
Mukoro, V., Gallego-Schmid, A., & Sharmina, M. (2021). Life cycle assessment of renewable energy in Africa. Sustain Prod Consum, 28: 1314–1332. https://doi.org/10.1016/j.spc.....
 
48.
Nguyen, T. L. T., & Gheewala, S. H. (2008). Life cycle assessment of fuel ethanol from cane molasses in Thailand. The International Journal of Life Cycle Assessment, 13(4), 301–311. https://doi.org/10.1007/s11367....
 
49.
Nilsalab, P., Gheewala, S. H., Mungkung, R., Perret, S. R., Silalertruksa, T., & Bonnet, S. (2017). Water demand and stress from oil palm-based biodiesel production in Thailand. The International Journal of Life Cycle Assessment, 22(11), 1666–1677. https://doi.org/10.1007/s11367....
 
50.
Obi, O. F., & Okongwu, K. C. (2016). Characterization of fuel briquettes made from a blend of rice husk and palm oil mill sludge. Biomass Conversion and Biorefinery, 6, 449–456. https://doi.org/10.1007/s13399....
 
51.
Okoro, S. U., Schickhoff, U., & Schneider, U. A. (2018). Impacts of bioenergy policies on land-use change in Nigeria. Energies, 11(1), 152. https://doi.org/10.3390/en1101....
 
52.
Oyedepo, S. O. (2012). Energy and sustainable development in Nigeria: the way forward. Energy, Sustainability and Society, 2, 1–17. https://doi.org/10.1186/2192-0....
 
53.
Paminto, A., Karuniasa, M., & Frimawaty, E. (2022). Potential environmental impact of biodiesel production from palm oil using LCA (Life Cycle Assessment) in Indonesia. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 12(1), 64–71. http://dx.doi.org/10.29244/jps....
 
54.
Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55–71. https://doi.org/10.1016/j.rene....
 
55.
Persson, U. M., Henders, S., & Cederberg, C. (2014). A method for calculating a land‐use change carbon footprint (LUC‐CFP) for agricultural commodities–applications to Brazilian beef and soy, Indonesian palm oil. Global Change Biology, 20(11), 3482–3491. https://doi.org/10.1111/gcb.12....
 
56.
Pleanjai, S., & Gheewala, S. H. (2009). Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy, 86, S209–S214. https://doi.org/10.1016/j.apen....
 
57.
Reijnders, L., & Huijbregts, M. A. (2008). Palm oil and the emission of carbon-based greenhouse gases. Journal of Cleaner Production, 16(4), 477–482. https://doi.org/10.1016/j.jcle....
 
58.
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., & Schellnhuber, H. J. (2017). A roadmap for rapid decarbonization. Science, 355(6331), 1269–1271. https://doi.org/10.1126/scienc....
 
59.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., ... & Zickfeld, K. (2018). Mitigation pathways compatible with 1.5 C in the context of sustainable development. In Global warming of 1.5 C (pp. 93-174). Intergovernmental Panel on Climate Change. Available: https://publications.pik-potsd....
 
60.
Rogowska, D., & Wyrwa, A. (2021). Analysis of the Potential for Reducing Life Cycle Greenhouse Gas Emissions from Motor Fuels. Energies, 14(13), 3744. https://doi.org/10.3390/en1413....
 
61.
Sanjana, J., Kumar, S. J., Kumar, P. N., Ramachandrudu, K., & Jacob, S. (2024). Coupled Production of Fatty Acid Alkyl Esters as Biodiesel and Fermentative Xylitol from Indian Palm (Elaeis guineensis Jacq.) Kernal Oil in a Biorefinery Loom. Waste and Biomass Valorization, 15(10), 5785–5804. https://doi.org/10.1007/s12649....
 
62.
Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., ... & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. https://doi.org/10.1126/scienc....
 
63.
Shen, F., Smith Jr, R. L., Li, J., Guo, H., Zhang, X., & Qi, X. (2021). Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chemistry, 23(4), 1536–1561. https://doi.org/10.1039/D0GC04....
 
64.
Siangjaeo, S., Gheewala, S. H., Unnanon, K., & Chidthaisong, A. (2011). Implications of land use change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand. Energy for Sustainable Development, 15(1), 1–7. https://doi.org/10.1016/j.esd.....
 
65.
Somorin, T. O., Di Lorenzo, G., & Kolios, A. J. (2017). Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel. Renewable Energy, 113, 966–979. https://doi.org/10.1016/j.rene....
 
66.
Spirinckx, C., & Ceuterick, D. (1996). Biodiesel and fossil diesel fuel: Comparative life cycle assessment. The International Journal of Life Cycle Assessment, 1, 127–132. https://doi.org/10.1007/BF0297....
 
67.
Suhara, A., Karyadi, Herawan, S. G., Tirta, A., Idris, M., Roslan, M. F., ... & Veza, I. (2024). Biodiesel sustainability: review of progress and challenges of biodiesel as sustainable biofuel. Clean Technologies, 6(3), 886–906. https://doi.org/10.3390/cleant....
 
68.
Ukoba, M. O., Diemuodeke, E. O., Briggs, T. A., Ojapah, M. M., Okedu, K. E., Owebor, K., ... & Ilhami, C. (2024). Multicriteria GIS-based assessment of biomass energy potentials in Nigeria. Frontiers in Bioengineering and Biotechnology, 12, 1329878. https://doi.org/10.3389/fbioe.....
 
69.
United Nations Framework Convention on Climate Change (UNFCCC). (2015). The Paris Agreement. Available: https://unfccc.int/process-and....
 
70.
Waheed, M. A., Akogun, O. A., & Enweremadu, C. C. (2023). Influence of feedstock mixtures on the fuel characteristics of blended cornhusk, cassava peels, and sawdust briquettes. Biomass Conversion and Biorefinery, 13(17), 16211–16226. https://doi.org/10.1007/s13399....
 
71.
Wang, H., Li, X., Sun, M., Xie, Y., & Li, H. (2025). Life Cycle Carbon Footprint of Indonesian Refined Palm Oil and Its Embodied Emissions in Global Trade. Land, 14(6), 1223. https://doi.org/10.3390/land14....
 
72.
World Bank. (2023). Nigeria energy sector: Challenges and solutions. Available: https://www.worldbank.org/en/c....
 
73.
Xu, H., Lee, U., & Wang, M. (2022). Life‐cycle greenhouse gas emissions reduction potential for corn ethanol refining in the USA. Biofuels, Bioproducts and Biorefining, 16(3), 671–681. https://doi.org/10.1002/bbb.23....
 
74.
Yang, F., Hanna, M. A., & Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for Biofuels, 5(1), 13. https://doi.org/10.1186/1754-6....
 
75.
Yee, K. F., Tan, K. T., Abdullah, A. Z., & Lee, K. T. (2009). Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy, 86, S189–S196. https://doi.org/10.1016/j.apen....
 
76.
Zhu, H., & Bi, Y. (2025). Assessment of full life cycle environmental impact and energy utilization in an interseasonal solar absorption energy storage system. Solar Energy, 295, 113545. https://www.sciencedirect.com/....
 
Journals System - logo
Scroll to top