Enhancing Food Safety: Adapting to Microbial Responses Under Diverse Environmental Stressors
 
More details
Hide details
1
Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
 
2
Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
 
3
Department of Basic Medical Sciences, Shadan College of Allied Health Sciences, Hyderabad, India
 
 
Submission date: 2025-04-01
 
 
Acceptance date: 2025-04-21
 
 
Publication date: 2025-06-30
 
 
Corresponding author
Imran Mohammad   

i.mohammad@psau.edu.sa
 
 
Mohammad Nadeem Bari   

m.bari@psau.edu.sa
 
 
Trends in Ecological and Indoor Environmental Engineering, 2025;3(2):12-26
 
KEYWORDS
ABSTRACT
Background:
Microbial adaptation is a fundamental process by which microorganisms dynamically adjust to changes in their environment. Microbial adaptation includes both short-term and long-term mechanisms that enable microorganisms to survive and thrive in changing environmental conditions. Microbial adaptation processes can result in evolutionary changes that provide sustainable advantages. These processes allow microbes to develop traits such as antibiotic resistance and enhanced biofilm formation, ensuring their survival and proliferation in diverse environments. Despite substantial progress, there remains a critical gap in the literature regarding a comprehensive synthesis of microbial adaptation mechanisms and their implications for enhancing food safety and ensuring the sustainable production of industrially valuable biochemicals.

Objectives:
This document seeks to provide a comprehensive overview of recent advancements in understanding resistance mechanisms to various environmental stresses for enhancement of food safety, including oxidative stress, hyperosmotic stress, thermal stress, acid stress, and organic solvent stress. In addition, the study examines the applications of stress-resistant mechanisms in producing diverse biomolecules and valuable chemicals. Finally, the manuscript offers a discuss prospects for identifying stress-resistant mechanisms through systems biology and further engineering these elements using synthetic biology to enhance productivity.

Methods:
The literature review sought to cover the most important aspects of stress-resistant mechanisms in the adaptation processes of microorganisms and their role in food safety and sustainable production of valuable biochemicals. This review was not limited to a specific time period, geographic or language scope, or publication type, although preference was given to peer-reviewed open access sources.

Results:
Researchers have found that adaptive responses of pathogens to factors such as changes in temperature, disinfectants, and storage conditions can pose significant challenges to traditional food safety practices. At the same time, microbial adaptation is an integral part of ecosystem functioning, profoundly influencing processes such as nutrient cycling, decomposition, and soil fertility. The soil microbial community plays a vital role in the safety of cultivated produce, as it acts as a key indicator of soil ecological status and the effectiveness of remediation of contaminated soils. Microorganisms serve as climate change signalling indicators, actively contributing to climate regulation. Higher temperatures, precipitation variations, and higher CO2 concentrations can increase microbial growth rates, potentially increasing the prevalence of pathogens in both plant and animal foods. Natural and synthetic microbial stressors are effective mechanisms for food quality and safety management. Adaptation to chemical stress provides microbial resistance to polluted environments and industrial processes, with implications for bioremediation, public health, and environmental sustainability.

Conclusion:
Microbial adaptation results from the interplay of environmental stressors, genetic variation, ecological interactions, and anthropogenic impacts that determine the resilience, diversity, and adaptive capacity of microbial communities in a variety of habitats and ecosystems. By manipulating these adaptive pathways through combined or sequential stressors (e.g., low heat and low pH), food technologists can disrupt microbial survival without compromising nutritional value. As the environmental stressor landscape continues to rapidly evolve, driven by anthropogenic activities, climate shifts, and emerging environmental disturbances, monitoring how microorganisms acclimate and evolve in response to these dynamic forces remains important.
REFERENCES (93)
1.
Abdullah-Al-Mahin, S. S., Higashi, C., Matsumoto, S., & Sonomoto, K. (2010). Improvement of multiple-stress tolerance and lactic acid production in lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of escherichia coli dnaK. Applied and Environmental Microbiology, 76(13), 4277–4285. https://doi.org/10.1128/AEM.02....
 
2.
Abee, T., & Wouters, J. A. (1999). Microbial stress response in minimal processing. International Journal of Food Microbiology, 50(1–2), 65–91. https://doi.org/10.1016/S0168-....
 
3.
Aggarwal, A., Frey, H., McDowell, G., Drenkhan, F., Nusser, M., Racoviteanu, A., & Hoelzle, M. (2022). Adaptation to climate change induced water stress in major glacierized mountain regions. Climate and Development, 14(7), 665–677. https://doi.org/10.1080/175655....
 
4.
Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314(5805), 1565–1568. https://doi.org/10.1126/scienc....
 
5.
An, S. Q., Potnis, N., Dow, M., Vorhölter, F. J., He, Y. Q., Becker, A., ... & Tang, J. L. (2020). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, 44(1), 1–32. https://doi.org/10.1093/femsre....
 
6.
Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16–34. https://doi.org/10.1016/j.jbio....
 
7.
Ballesteros, I., Oliva, J. M., Ballesteros, M., & Carrasco, J. (1993). Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Applied Biochemistry and Biotechnology, 39, 201–211. https://doi.org/10.1007/BF0291....
 
8.
Benedetti, M., Giuliani, M. E., Mezzelani, M., Nardi, A., & Regoli, F. (2022). Emerging environmental stressors and oxidative pathways in marine organisms: Current knowledge on regulation mechanisms and functional effects. Biocell, 46(1), 37. https://doi.org/10.32604/bioce....
 
9.
Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7(7), 1099–1111. https://doi.org/10.1105/tpc.7.....
 
10.
Bollenbach, T. (2015). Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Current Opinion in Microbiology, 27, 1–9. https://doi.org/10.1016/j.mib.....
 
11.
Boyce, K. J. (2022). Mutators enhance adaptive micro-evolution in pathogenic microbes. Microorganisms, 10(2), 442. https://doi.org/10.3390/microo....
 
12.
Bremer, E., & Kramer, R. (2019). Responses of microorganisms to osmotic stress. Annual Review of Microbiology, 73, 313–334. https://doi.org/10.1146/annure....
 
13.
Cakar, Z. P., Seker, U. O., Tamerler, C., Sonderegger, M., & Sauer, U. (2005). Evolutionary engineering of multiple-stress resistant saccharomyces cerevisiae. FEMS Yeast Research, 5(6–7), 569–578. https://doi.org/10.1016/j.fems....
 
14.
Choi, S. H., Baumler, D. J., & Kaspar, C. W. (2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in escherichia coli O157: H7. Applied and Environmental Microbiology, 66(9), 3911–3916. https://doi.org/10.1128/AEM.66....
 
15.
Coleman, S. T., Fang, T. K., Rovinsky, S. A., Turano, F. J., & Moye-Rowley, W. S. (2001). Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in saccharomyces cerevisiae. Journal of Biological Chemistry, 276(1), 244–250. https://doi.org/10.1074/jbc.M0....
 
16.
Compan, I., & Touati, D. (1993). Interaction of six global transcription regulators in expression of manganese superoxide dismutase in escherichia coli K-12. Journal of Bacteriology, 175(6), 1687–1696. https://doi.org/10.1128/jb.175....
 
17.
National Research Council (NRC), Division on Engineering, Physical Sciences, Commission on Engineering, Technical Systems, & Committee on In Situ Bioremediation. (1993). In situ bioremediation: When does it work?. National Academies Press.
 
18.
Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53(1), 121–147. https://doi.org/10.1128/mr.53.....
 
19.
Donohoue, P. D., Barrangou, R., & May, A. P. (2018). Advances in industrial biotechnology using CRISPR-cas systems. Trends in Biotechnology, 36(2), 134–146. https://doi.org/10.1016/j.tibt....
 
20.
Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Science, 88(16), 7160–7164. https://doi.org/10.1073/pnas.8....
 
21.
Elena, S. F., & Lenski, R. E. (2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics, 4(6), 457–469. https://doi.org/10.1038/nrg108....
 
22.
Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K. G., Schulz, R., ... & Bundschuh, M. (2018). History matters: Heterotrophic microbial community structure and function adapt to multiple stressors. Global Change Biology, 24(2), e402-e415. https://doi.org/10.1111/gcb.13....
 
23.
Frankel, N. W., Pontius, W., Dufour, Y. S., Long, J., Hernandez-Nunez, L., & Emonet, T. (2014). Adaptability of non-genetic diversity in bacterial chemotaxis. Elife, 3, e03526. https://doi.org/10.7554/eLife.....
 
24.
Gallardo, C., Monras, J. P., Plaza, D. O., Collao, B., Saona, L. A., Duran-Toro, V., & Perez-Donoso, J. M. (2014). Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant antarctic bacteria. Journal of Biotechnology, 187, 108–115. https://doi.org/10.1016/j.jbio....
 
25.
Garcia-Pausas, J., & Paterson, E. (2011). Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biology and Biochemistry, 43(8), 1705–1713. https://doi.org/10.1016/j.soil....
 
26.
Gatti, M., & Pea, F. (2023). The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: How the ugly duckling turned into a swan. Expert Review of Clinical Pharmacology, 16(11), 1035–1051. https://doi.org/10.1080/175124....
 
27.
Goel, R. (2009). Metagenomics–A Tool for Identification and Characterization of Uncultivable Microbial Diversity. Dr. HS Tripathi.
 
28.
Guan, N., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2016). Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of propionibacterium jensenii. Biotechnology and Bioengineering, 3(6), 1294–1304. https://doi.org/10.1002/bit.25....
 
29.
Guan, N., Liu, L., Zhuge, X., Xu, Q., Li, J., Du, G., & Chen, J. (2012). Genome shuffling improves acid tolerance of propionibacterium acidipropionici and propionic acid production. Advances in Chemical Research, 15, 143–152.
 
30.
Guillén, S., Nadal, L., Álvarez, I., Mañas, P., & Cebrián, G. (2021). Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods, 10(3), 617. https://doi.org/10.3390/foods1....
 
31.
Hegab, H. M., ElMekawy, A., & Stakenborg, T. (2013). Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics, 7(2), 021502 (2013). https://doi.org/10.1063/1.4799....
 
32.
Heux, S., Meynial-Salles, I., O'Donohue, M. J., & Dumon, C. (2015). White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. Biotechnology Advances, 33(8), 1653–1670. https://doi.org/10.1016/j.biot....
 
33.
Hirasawa, T., Yoshikawa, K., Nakakura, Y., Nagahisa, K., Furusawa, C., Katakura, Y., ... & Shioya, S. (2007). Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 131(1), 34–44. https://doi.org/10.1016/j.jbio....
 
34.
Hosseini Nezhad, M., Hussain, A. M., & Britz, L. M. (2015). Stress responses in probiotic Lactobacillus casei. Critical Reviews in Food Science and Nutrition, 55(6), 740–749. https://doi.org/10.1080/104083....
 
35.
Joshi, S. S., Jadhav, M. P. K., Chourasia, N. K., Jadhav, M. P. J., Pathade, K. N., & Kanimozhi, K. R. (2024). Bioremediation strategies for soil and water pollution harnessing the power of microorganisms. Migration Letters, 21(S8), 1–20.
 
36.
Li, F., Chen, L., Zhang, J., Yin, J., & Huang, S. (2017). Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 8, 187. https://doi.org/10.3389/fmicb.....
 
37.
Li, J., Zhu, T., Singh, B. K., Pendall, E., Li, B., Fang, C., & Nie, M. (2021). Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Science Bulletin, 66(19), 2036–2044. https://doi.org/10.1016/j.scib....
 
38.
Liang, G. B., Du, G. C., & Chen, J. (2008a). A novel strategy of enhanced glutathione production in high cell density cultivation of Candida utilis – cysteine addition combined with dissolved oxygen controlling. Enzyme and Microbial Technology, 42(3), 284–289. https://doi.org/10.1016/j.enzm....
 
39.
Liang, G., Liao, X., Du, G., & Chen, J. (2008b). Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of candida utilis. Journal of Applied Microbiology, 105(5), 1432–1440. https://doi.org/10.1111/j.1365....
 
40.
Liu, J., Wisniewski, M., Droby, S., Vero, S., Tian, S., & Hershkovitz, V. (2011). Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast cystofilobasidium infirmominiatum. International Journal of Food Microbiology, 146(1), 76–83. https://doi.org/10.1016/j.ijfo....
 
41.
Liu, S., Ren, H., Shen, L., Lou, L., Tian, G., Zheng, P., & Hu, B. (2015). pH levels drive bacterial community structure in sediments of the qiantang river as determined by 454 pyrosequencing. Frontiers in Microbiology, 6, 285. https://doi.org/10.3389/fmicb.....
 
42.
Losapio, G., Genes, L., Knight, C. J., McFadden, T. N., & Pavan, L. (2024). Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Functional Ecology, 38(1), 8–21. https://doi.org/10.1111/1365-2....
 
43.
Lu, X., & Jiang, Y. (2023). Advancements in studying the effects of climate change on forest ecosystems. Advances in Resources Research, 3(4), 151–177. https://doi.org/10.50908/arr.3....
 
44.
Ma, R., Zhang, Y., Hong, H., Lu, W., Lin, M., Chen, M., & Zhang, W. (2011). Improved osmotic tolerance and ethanol production of ethanologenic escherichia coli by IrrE, a global regulator of radiation-resistance of deinococcus radiodurans. Current Microbiology, 62, 659–664. https://doi.org/10.1007/s00284....
 
45.
Maitra, S. (2018). In situ bioremediation – An overview. Life Science Informatics Publications. 4(6), 576–598. https://doi.org/10.26479/2018.....
 
46.
Marmion, M., Macori, G., Ferone, M., Whyte, P., & Scannell, A. G. M. (2022). Survive and thrive: Control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. International Journal of Food Microbiology, 368, 109612. https://doi.org/10.1016/j.ijfo....
 
47.
Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44(7), 1771–1777. https://doi.org/10.1128/aac.44....
 
48.
Mitchell, A., Romano, G. H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., & Pilpel, Y. (2009). Adaptive prediction of environmental changes by microorganisms. Nature, 460(7252), 220–224. https://doi.org/10.1038/nature....
 
49.
Mulder, C., Boit, A., Bonkowski, M., De Ruiter, P. C., Mancinelli, G., der Heijden, M. G., & Rutgers, M. (2011). A belowground perspective on dutch agroecosystems: How soil organisms interact to support ecosystem services. Advances in Ecological Research, 44, 277–357. https://doi.org/10.1016/B978-0....
 
50.
Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I. U., ... & Du, D. (2022). The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770. https://doi.org/10.1016/j.jenv....
 
51.
Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A., Pathak, N., Commault, A. S., & Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of the Total Environment, 765, 142753. https://doi.org/10.1016/j.scit....
 
52.
Oide, S., Gunji, W., Moteki, Y., Yamamoto, S., & Inui, M. (2015). Thermal and solvent stress cross-tolerance conferred to corynebacterium glutamicum by adaptive laboratory evolution. Applied and Environmental Microbiology, 81(7), 2284–2298. https://doi.org/10.1128/AEM.03....
 
53.
Olive, A. J., & Sassetti, C. M. (2016). Metabolic crosstalk between host and pathogen: Sensing, adapting and competing. Nature Reviews Microbiology, 14(4), 221–234. https://doi.org/10.1038/nrmicr....
 
54.
Pan, J., Wang, G., Nong, J., & Xie, Q. (2023). Biodegradation of benzo (a) pyrene by a genetically engineered bacillus licheniformis: Degradation, metabolic pathway and toxicity analysis. Chemical Engineering Journal, 478, 147478. https://doi.org/10.1016/j.cej.....
 
55.
Philippot, L., Griffiths, B. S., & Langenheder, S. (2021). Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews, 85(2). https://doi.org/10.1128/mmbr.0....
 
56.
Postollec, F., Falentin, H., Pavan, S., Combrisson, J., & Sohier, D. (2011). Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiology, 28(5), 848–861. https://doi.org/10.1016/j.fm.2....
 
57.
Purvis, J. E., Yomano, L. P., & Ingram, L. O. (2005). Enhanced trehalose production improves growth of escherichia coli under osmotic stress. Applied and Environmental Microbiology, 71(7), 3761–3769. https://doi.org/10.1128/AEM.71....
 
58.
Rahman, M. S. (2020). Food preservation: an overview. Handbook of food preservation, 7–18.
 
59.
Raiesi, F., & Sadeghi, E. (2019). Interactive effect of salinity and cadmium toxicity on soil microbial properties and enzyme activities. Ecotoxicology and Environmental Safety, 168, 221–229. https://doi.org/10.1016/j.ecoe....
 
60.
Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Megharaj, M. (2019). Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? Science of the Total Environment, 654, 177–189. https://doi.org/10.1016/j.scit....
 
61.
Riley, S. P., Sauvajot, R. M., Fuller, T. K., York, E. C., Kamradt, D. A., Bromley, C., & Wayne, R. K. (2003). Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern california. Conservation Biology, 17(2), 566–576. https://doi.org/10.1046/j.1523....
 
62.
Rodríguez‐Verdugo, A., Vulin, C., & Ackermann, M. (2019). The rate of environmental fluctuations shapes ecological dynamics in a two‐species microbial system. Ecology Letters, 22(5), 838–846. https://doi.org/10.1111/ele.13....
 
63.
Samagaci, L., Ouattara, H. G., Goualie, B. G., & Niamke, S. L. (2015). Polyphasic analysis of pectinolytic and stress-resistant yeast strains isolated from ivorian cocoa fermentation. Journal of Food Research, 4(1), 124. https://doi.org/10.5539/jfr.v4....
 
64.
Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress‐response physiology and its implications for ecosystem function. Ecology, 88(6), 1386–1394. https://doi.org/10.1890/06-021....
 
65.
Seufferheld, M. J., Alvarez, H. M., & Farias, M. E. (2008). Role of polyphosphates in microbial adaptation to extreme environments. Applied and Environmental Microbiology, 74(19), 5867–5874. https://doi.org/10.1128/AEM.00....
 
66.
Severino, P., Dussurget, O., Vêncio, R. Z., Dumas, E., Garrido, P., Padilla, G., ... & Buchrieser, C. (2007). Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response. Applied and Environmental Microbiology, 73(19), 6078–6088. https://doi.org/10.1128/AEM.02....
 
67.
Shah, G. M., Ali, H., Ahmad, I., Kamran, M., Hammad, M., ... & Rashid, M. I. (2022). Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. Environmental Pollution, 293, 118559. https://doi.org/10.1016/j.envp....
 
68.
Sharma, P., Singh, S. P., Iqbal, H. M., & Tong, Y. W. (2022). Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environmental Research, 211, 113102. https://doi.org/10.1016/j.envr....
 
69.
Shi, D. J., Wang, C. L., & Wang, K. M. (2009). Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 36(1), 139–147. https://doi.org/10.1007/s10295....
 
70.
Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016). Plant natural products targeting bacterial virulence factors. Chemical Reviews, 116(16), 9162–9236. https://doi.org/10.1021/acs.ch....
 
71.
de Bruijn, F. J., Smidt, H., Cocolin, L. S., Sauer, M., Dowling, D. N., & Thomashow, L. (Eds.). (2022). Good microbes in medicine, food production, biotechnology, bioremediation, and agriculture. John Wiley & Sons.
 
72.
Solden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 31, 217–226. https://doi.org/10.1016/j.mib.....
 
73.
Subedi, B., Aguilar, L., Robinson, E. M., Hageman, K. J., Bjorklund, E., Sheesley, R. J., & Usenko, S. (2015). Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. TrAC Trends in Analytical Chemistry, 68, 119–132. https://doi.org/10.1016/j.trac....
 
74.
Tan, Y. S., Zhang, R. K., Liu, Z. H., Li, B. Z., & Yuan, Y. J. (2022). Microbial adaptation to enhance stress tolerance. Frontiers in Microbiology, 13, 888746. https://doi.org/10.3389/fmicb.....
 
75.
Tiedje, J. M., Bruns, M. A., Casadevall, A., Criddle, C. S., Eloe-Fadrosh, E., Karl, D. M., ... & Zhou, J. (2022). Microbes and climate change: a research prospectus for the future. MBio, 13(3), e00800-22. https://doi.org/10.1128/mbio.0....
 
76.
Toft, C., & Andersson, S. G. (2010). Evolutionary microbial genomics: insights into bacterial host adaptation. Nature Reviews Genetics, 11(7), 465–475. https://doi.org/10.1038/nrg279....
 
77.
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., ... & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph....
 
78.
Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H., & Dixon, K. W. (2020). Preparing for the worst: Utilizing stress?tolerant soil microbial communities to aid ecological restoration in the anthropocene. Ecological Solutions and Evidence, 1(2), e12027. https://doi.org/10.1002/2688-8....
 
79.
van Vliet, S., Hauert, C., Fridberg, K., & Ackermann, M. (2022). Dal Co A (2022) Global dynamics of microbial communities emerge from local interaction rules. PLOS Computational Biology, 18(3), e1009877. https://doi.org/10.1371/journa....
 
80.
Verma, M. L., Kumar, S., Jeslin, J., & Dubey, N. K. (2020). Microbial production of biopolymers with potential biotechnological applications. Biopolymer-based formulations (pp. 105–137) Elsevier. https://doi.org/10.1016/B978-0....
 
81.
Wang, Y., Bhattacharya, T., Jiang, Y., Qin, X., Wang, Y., Liu, Y., ... & Chen, L. (2021). A novel deep learning method for predictive modeling of microbiome data. Briefings in Bioinformatics, 22(3), bbaa073. https://doi.org/10.1093/bib/bb....
 
82.
Wondraczek, L., Pohnert, G., Schacher, F. H., Kohler, A., Gottschaldt, M., Schubert, U. S., & Brakhage, A. A. (2019). Artificial microbial arenas: Materials for observing and manipulating microbial consortia. Advanced Materials, 31(24), 190028. https://doi.org/10.1002/adma.2....
 
83.
Wu, J., & Tzanakakis, E. S. (2013). Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnology Advances, 31(7), 1047–1062. https://doi.org/10.1016/j.biot....
 
84.
Xu, S., Zhou, J., Liu, L., & Chen, J. (2010). Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnology and Bioprocess Engineering, 15, 285–292. https://doi.org/10.1007/s12257....
 
85.
Xu, S., Zhou, J., Liu, L., & Chen, J. (2011). Arginine: A novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochemistry, 46(6), 1230–1235. https://doi.org/10.1016/j.proc....
 
86.
Yan, X., Tao, R., Zhou, H., Zhang, Y., Chen, D., Ma, L., & Bai, Y. (2025). Sublethal sanitizers exposure differentially affects biofilm formation in three adapted Salmonella strains: A phenotypic-transcriptomic analysis of increased biofilm formed by ATCC 14028. International Journal of Food Microbiology, 111189. https://doi.org/10.1016/j.ijfo....
 
87.
Yang, X., Cheng, J., Franks, A. E., Huang, X., Yang, Q., Cheng, Z., ... & He, Y. (2023). Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biology and Biochemistry, 177, 108916. https://doi.org/10.1016/j.soil....
 
88.
Yang, X., Li, Y., Niu, B., Chen, Q., Hu, Y., Yang, Y., ... & Zhang, G. (2021). Temperature and precipitation drive elevational patterns of microbial beta diversity in alpine grasslands. Microbial Ecology, 1–13. https://doi.org/10.1007/s00248....
 
89.
Yazawa, H., Iwahashi, H., & Uemura, H. (2007). Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast, 24(7), 551–560. https://doi.org/10.1002/yea.14....
 
90.
Yong, Y. C., & Zhong, J. J. (2010). Recent advances in biodegradation in china: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 45(12), 1937–1943. https://doi.org/10.1016/j.proc....
 
91.
Zhang, C., Sun, R., & Xia, T. (2020). Adaption/resistance to antimicrobial nanoparticles: Will it be a problem?. Nano Today, 34, 100909. https://doi.org/10.1016/j.nant....
 
92.
Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., & Chen, J. (2010). Optimization and scale-up of propionic acid production by propionic acid-tolerant propionibacterium acidipropionici with glycerol as the carbon source. Bioresource Technology, 101(22), 8902–8906. https://doi.org/10.1016/j.bior....
 
93.
Zingaro, K. A., & Papoutsakis, E. T. (2013). GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns. Metabolic Engineering, 15, 196–205. https://doi.org/10.1016/j.ymbe....
 
Journals System - logo
Scroll to top