Microplastics in Museums: Pollution and Paleoecology
 
More details
Hide details
1
Department of Microbiology and Plant Biology, Oklahoma University, 770 Van Vleet Oval, Norman, OK, 73019, United States
 
2
Department of Geology and Geophysics, LAGEMAR – Marine Geology Laboratory, Institute of Geosciences, Universidade Federal Fluminense, Niteroi, Brazil
 
 
Submission date: 2025-04-07
 
 
Acceptance date: 2025-04-26
 
 
Publication date: 2024-06-30
 
 
Corresponding author
Christine C. Gaylarde   

cgaylarde@gmail.com
 
 
Trends in Ecological and Indoor Environmental Engineering, 2025;3(2)
 
KEYWORDS
ABSTRACT
Background:
With the advent of the creation, production, and continuous use of plastic in both industrial and domestic spaces, plastic materials have become an integral part of human daily life, resulting in a range of impacts, both positive and negative. More recently, their resistance and refractoriness, once considered significant advantages, are now understood as a threat to the balance of ecosystems and, ultimately, to human health. The particular composition of plastic grants it great malleability and durability. On the other hand, it includes a series of potentially toxic compounds that, over time and through environmental action, can become bioavailable at various levels of the trophic chain through tiny particles known as microplastics. Research has increasingly revealed various types of damage across multiple sectors of the environment and society.

Objectives:
This article attempts to find out the impact of microplastics on the atmospheric layer and the consequences for historical heritage as a result of interactions in the indoor environment.

Methods:
The sources, types, migration mechanisms, and impacts of environmental MPs and heritage items are analysed and summarized, and it is also considered how the presence of these small particles in preserved organisms and tissues in museums and other collections can serve as indicators of the mechanisms and environmental dynamics of the Anthropocene.

Results:
Microplastics have been detected in the atmosphere and artefacts in natural history and other collections, as well as sediment cores, leading to the conclusion that the plasticene era began in the 1950s. Such research studies, and potential similar investigations on historical stored tissue samples, require optimization before the information stored in these sources can be fully mined.

Conclusion:
Microplastics are present at high levels in both outdoor and indoor air. Together with their adsorbed pollutants they can cause deterioration of the artefacts and health problems for conservators in museums. In museum specimens like preserved animals and in stored tissue collections they can act as historical proof of the distribution of microplastics in living things throughout time and this has confirmed the beginning of the Plasticene as the early 1950s.
REFERENCES (124)
1.
Adams, K., Greenbaum, D. S., Shaikh, R., van Erp, A. M., & Russell, A. G. (2015). Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air & Waste Management Association, 65(5), 544–558. https://doi.org/10.1080/109622....
 
2.
Alegbe, E. O., & Uthman, T. O. (2024). A review of history, properties, classification, applications and challenges of natural and synthetic dyes. Heliyon, 10(13), e33646. https://doi.org/10.1016/j.heli....
 
3.
Alvarez-Andrade, A., Wakida, F. T., de Jesus Piñon-Colin, T., Wakida-Kusunoki, A. T., Castillo-Quiñones, J. E., & García-Flores, E. (2023). Microplastic abundance in feces of lagomorphs in relation to urbanization. Science of the Total Environment, 864, 161025. https://doi.org/10.1016/j.scit....
 
4.
Alves, F. L., Pinheiro, L. M., Bueno, C., Agostini, V. O., Perez, L., Fernandes, E. H. L., ... & García-Rodríguez, F. (2023). The use of microplastics as a reliable chronological marker of the Anthropocene onset in Southeastern South America. Science of the Total Environment, 857, 159633. https://doi.org/10.1016/j.scit....
 
5.
Arif, Y., Mir, A. R., Zieliński, P., Hayat, S., & Bajguz, A. (2024). Microplastics and nanoplastics: source, behavior, remediation, and multi-level environmental impact. Journal of Environmental Management, 356, 120618. https://doi.org/10.1016/j.jenv....
 
6.
Bancone, C. E., Turner, S. D., Ivar do Sul, J. A., & Rose, N. L. (2020). The paleoecology of microplastic contamination. Frontiers in Environmental Science, 8, 574008. https://doi.org/10.3389/fenvs.....
 
7.
Beer, S., Garm, A., Huwer, B., Dierking, J., & Nielsen, T. G. (2018). No increase in marine microplastic concentration over the last three decades–a case study from the Baltic Sea. Science of the Total Environment, 621, 1272–1279. https://doi.org/10.1016/j.scit....
 
8.
Boisen, O. C., Sidlauskas, B. L., Heppell, S. A., & Brander, S. M. (2024). Museum-archived myctophids reveal decadal trends in microplastic and microfiber ingestion. Science of the Total Environment, 954, 176310. https://doi.org/10.1016/j.scit....
 
9.
Borroto-Paez, R., León, O. E. S., & Fabres, B. A. (2024). Microplastics in invasive geckos (Hemidactylus mabouia and H. angulatus): first evidence in Cuba and the Caribbean, and transfer pathways of concern. Reptiles & Amphibians, 31(1), e22751–e22751. https://doi.org/10.17161/randa....
 
10.
Botling, J., & Micke, P. (2010). Biobanking of fresh frozen tissue from clinical surgical specimens: transport logistics, sample selection, and histologic characterization. In Methods in Biobanking (pp. 299-306). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-....
 
11.
Brandon, J. A., Jones, W., & Ohman, M. D. (2019). Multidecadal increase in plastic particles in coastal ocean sediments. Science Advances, 5(9), eaax0587. https://doi.org/10.1126/sciadv....
 
12.
Cappitelli, F., Cattò, C., & Villa, F. (2020). The control of cultural heritage microbial deterioration. Microorganisms, 8(10), 1542. https://doi.org/10.3390/microo....
 
13.
Carbery, M., O'Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409. https://doi.org/10.1016/j.envi....
 
14.
Cardoso, R. K. D. O. A., Silingardi, H. M. T., & Cardoso, A. A. (2020). Gases ácidos na atmosfera: fontes, transporte, deposição e suas consequências para o ambiente. Química Nova na Escola, 42(4), 382–385. Available: https://web.archive.org/web/20....
 
16.
Chen, C. Y., Chen, S. Y., & Liao, C. M. (2025). Regional and population-scale trends in human inhalation exposure to airborne microplastics: Implications for health risk assessment. Environmental Pollution, 371, 125950. https://doi.org/10.1016/j.envp....
 
17.
Chen, H., Zou, X., Ding, Y., Wang, Y., Fu, G., & Yuan, F. (2022). Are microplastics the ‘technofossils’ of the Anthropocene?. Anthropocene Coasts, 5(1), 8. https://doi.org/10.1007/s44218....
 
18.
Cocozza, P., Scarrica, V. M., Rizzo, A., Serranti, S., Staiano, A., Bonifazi, G., & Anfuso, G. (2025). Microplastic pollution from pellet spillage: Analysis of the Toconao ship accident along the Spanish and Portuguese coasts. Marine Pollution Bulletin, 211, 117430.
 
19.
Colliander, A. (2025). Accepting the decay of plastic artifacts in museums: pasts and futures surfacing in a life preserver from sunken MS Estonia. International Journal of Heritage Studies, 31(3), 312–324. https://doi.org/10.1080/135272....
 
20.
Courtene-Jones, W., Quinn, B., Ewins, C., Gary, S. F., & Narayanaswamy, B. E. (2019). Consistent microplastic ingestion by deep-sea invertebrates over the last four decades (1976–2015), a study from the North East Atlantic. Environmental Pollution, 244, 503–512. https://doi.org/10.1016/j.envp....
 
21.
Cverenkárová, K., Valachovičová, M., Mackuľak, T., Žemlička, L., & Bírošová, L. (2021). Microplastics in the food chain. Life, 11(12), 1349. https://doi.org/10.3390/life11....
 
22.
Dalla Mora, T., De Vivo, M. A., Scarpa, M., & Peron, F. (2025). Critical Review of the Application of the Principal International Standards and Guidelines on Indoor Microclimates for the Preventive Conservation of Cultural Heritage. Sustainability, 17(3), 1189. https://doi.org/10.3390/su1703....
 
23.
Day, J. K., Swadling, D. S., Huggett, M. J., & Gaston, T. F. (2024). First evidence of microplastic “nurdle” consumption by fish in south-eastern Australia. Regional Studies in Marine Science, 77, 103715. https://doi.org/10.1016/j.rsma....
 
24.
de Almeida, M. P., Gaylarde, C. C., Neto, J. A. B., Delgado, J. D. F., Lima, L. D. S., Neves, C. V., ... & da Fonseca, E. M. (2023). The prevalence of microplastics on the earth and resulting increased imbalances in biogeochemical cycling. Water Emerging Contaminants & Nanoplastics, 2(2), N–A. https://doi.org/10.20517/wecn.....
 
25.
Dettling, V., Samadi, S., Ratti, C., Fini, J. B., & Laguionie, C. (2024). Can natural history collection specimens be used as aquatic microplastic pollution bioindicators?. Ecological Indicators, 160, 111894. https://doi.org/10.1016/j.ecol....
 
26.
Diaz-Santibañez, I., Clark, B. L., & Zavalaga, C. B. (2023). Guanay cormorant (Leucocarbo bougainvilliorum) pellets as an indicator of marine plastic pollution along the Peruvian coast. Marine Pollution Bulletin, 192, 115104. https://doi.org/10.1016/j.marp....
 
27.
Dinis, M. D. L., & Gonçalves, M. I. (2020). Spatial variability of atmosphere dust fallout flux in urban–industrial environments. Atmosphere, 11(10), 1069. https://doi.org/10.3390/atmos1....
 
28.
Dong, M., Luo, Z., Jiang, Q., Xing, X., Zhang, Q., & Sun, Y. (2020). The rapid increases in microplastics in urban lake sediments. Scientific reports, 10(1), 848. https://doi.org/10.1038/s41598....
 
29.
Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry, 12(5), 592–599. https://doi.org/10.1071/EN1416....
 
30.
Dursun, C., Candan, K., Karaoğlu, K., Ilgaz, Ç., Kumlutaş, Y., Caynak, E. Y., & Gül, S. (2025). Microplastic accumulation in snake-eyed lizard (Ophisops elegans Menetries, 1832) after long-term monitoring: habitats matter, not years. Environmental Sciences Europe, 37(1), 8. https://doi.org/10.1186/s12302....
 
31.
Ehlers, S. M., Ellrich, J. A., & Koop, J. H. (2022). Microplastic load and polymer type composition in European rocky intertidal snails: Consistency across locations, wave exposure and years. Environmental Pollution, 292, 118280. https://doi.org/10.1016/j.envp....
 
32.
Fang, C., Zhou, W., Hu, J., Wu, C., Niu, J., & Naidu, R. (2024). Paint has the potential to release microplastics, nanoplastics, inorganic nanoparticles, and hybrid materials. Environmental Sciences Europe, 36(1), 17. https://doi.org/10.1186/s12302....
 
33.
Fu, L., Li, J., Wang, G., Luan, Y., & Dai, W. (2021). Adsorption behavior of organic pollutants on microplastics. Ecotoxicology and Environmental Safety, 217, 112207. https://doi.org/10.1016/j.ecoe....
 
34.
Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., ... & Pöschl, U. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6(7), 2017–2038. https://doi.org/10.5194/acp-6-....
 
35.
Gad, A. K., Toner, K., Benfield, M. C., & Midway, S. R. (2023). Microplastics in mainstem Mississippi River fishes. Frontiers in Environmental Science, 10, 1065583. https://doi.org/10.3389/fenvs.....
 
36.
Gadd, G. M., & Dyer, T. D. (2017). Bioprotection of the built environment and cultural heritage. Microbial biotechnology, 10(5), 1152–1156. https://doi.org/10.1111/1751-7....
 
37.
Gaylarde, C. C., Baptista Neto, J. A., & da Fonseca, E. M. (2024). Indoor Airborne Microplastics: Human Health Importance and Effects of Air Filtration and Turbulence. Microplastics, 3(4), 653–670. https://doi.org/10.3390/microp....
 
38.
Gaylarde, C. C., Neto, J. A. B., & da Fonseca, E. M. (2021а). Paint fragments as polluting microplastics: A brief review. Marine Pollution Bulletin, 162, 111847. https://doi.org/10.1016/j.marp....
 
39.
Gaylarde, C., Baptista-Neto, J. A., & da Fonseca, E. M. (2021). Plastic microfibre pollution: how important is clothes’ laundering?. Heliyon, 7(5). https://doi.org/10.1016/j.heli....
 
40.
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv....
 
41.
Godish, T. (2019). Indoor air pollution control. CRC press. Available at: https://books.google.pl/books?....
 
42.
Gonçalves, C., Martins, M., Costa, M. H., & Costa, P. M. (2018). Development of a method for the detection of polystyrene microplastics in paraffin-embedded histological sections. Histochemistry and cell biology, 149, 187–191. https://doi.org/10.1007/s00418....
 
43.
Grau-Bové, J., & Strlič, M. (2013). Fine particulate matter in indoor cultural heritage: a literature review. Heritage Science, 1, 1–8. https://doi.org/10.1186/2050-7....
 
44.
Gül, S., Karaoğlu, K., Özçifçi, Z., Candan, K., Ilgaz, Ç., & Kumlutaş, Y. (2022). Occurrence of microplastics in herpetological museum collection: grass snake (Natrix natrix [Linnaeus, 1758]) and dice snake (Natrix tessellata [Laurenti, 1769]) as model organisms. Water, Air, & Soil Pollution, 233(5), 160. https://doi.org/10.1007/s11270....
 
45.
Gutarowska, B., Pietrzak, K., Machnowski, W., & Milczarek, J. M. (2017). Historical textiles–a review of microbial deterioration analysis and disinfection methods. Textile Research Journal, 87(19), 2388–2406. https://doi.org/10.1177/004051....
 
46.
Gwinnett, C., & Miller, R. Z. (2021). Are we contaminating our samples? A preliminary study to investigate procedural contamination during field sampling and processing for microplastic and anthropogenic microparticles. Marine pollution bulletin, 173, 113095. https://doi.org/10.1016/j.marp....
 
47.
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials, 344, 179–199. https://doi.org/10.1016/j.jhaz....
 
48.
Halbach, M., Vogel, M., Tammen, J. K., Rüdel, H., Koschorreck, J., & Scholz-Böttcher, B. M. (2022). 30 years trends of microplastic pollution: Mass-quantitative analysis of archived mussel samples from the North and Baltic Seas. Science of The Total Environment, 826, 154179. https://doi.org/10.1016/j.scit....
 
49.
Hartwig, E., Clemens, T., & Heckroth, M. (2007). Plastic debris as nesting material in a Kittiwake-(Rissa tridactyla)-colony at the Jammerbugt, Northwest Denmark. Marine Pollution Bulletin, 54(5), 595–597. https://doi.org/10.1016/j.marp....
 
50.
Hernandez‐Soriano, A. I., Martínez‐Salvador, C., Alvarez‐Zeferino, J. C., Vázquez‐Morillas, A., & Mesa‐Jurado, M. A. (2024). Microplastics in cosmetics and personal care products. Toxic Effects of Micro‐and Nanoplastics: Environment, Food and Human Health, 215–251. https://doi.org/10.1002/978139....
 
51.
Hou, L., McMahan, C. D., McNeish, R. E., Munno, K., Rochman, C. M., & Hoellein, T. J. (2021). A fish tale: a century of museum specimens reveal increasing microplastic concentrations in freshwater fish. Ecological applications, 31(5), e02320. https://doi.org/10.1002/eap.23....
 
52.
Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., ... & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405, 124187. https://doi.org/10.1016/j.jhaz....
 
53.
Ibrahim, A. M. (2024). Plastics: photodegradations and mechanisms. In Microplastics and Pollutants: Interactions, Degradations and Mechanisms (pp. 25–49). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-....
 
54.
Ilechukwu, I., Das, R. R., & Reimer, J. D. (2023). Review of microplastics in museum specimens: an under-utilized tool to better understand the Plasticene. Marine Pollution Bulletin, 191, 114922. https://doi.org/10.1016/j.marp....
 
55.
Jagiello, Z., Reynolds, S. J., Nagy, J., Mainwaring, M. C., & Ibanez-Alamo, J. D. (2023). Why do some bird species incorporate more anthropogenic materials into their nests than others?. Philosophical Transactions of the Royal Society B, 378(1884), 20220156. https://doi.org/10.1098/rstb.2....
 
56.
Jahedi, F., Fard, N. J. H., & Turner, A. (2025). A Systematic Review of Biomonitoring Microplastics in Environmental Matrices: Emphasis on Airborne Particles, Dry Deposits, and Comparative Analysis with Traditional Methods. Environmental Advances, 100609. https://doi.org/10.1016/j.enva....
 
57.
Jiang, X., Conner, N., Lu, K., Tunnell, J. W., & Liu, Z. (2022). Occurrence, distribution, and associated pollutants of plastic pellets (nurdles) in coastal areas of South Texas. Science of The Total Environment, 842, 156826. https://doi.org/10.1016/j.scit....
 
58.
Karbowska-Berent, J., Górny, R. L., Strzelczyk, A. B., & Wlazło, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46(10), 1872–1879. https://doi.org/10.1016/j.buil....
 
59.
Karlsson, T. M., Arneborg, L., Broström, G., Almroth, B. C., Gipperth, L., & Hassellöv, M. (2018). The unaccountability case of plastic pellet pollution. Marine pollution bulletin, 129(1), 52–60. https://doi.org/10.1016/j.marp....
 
60.
Khan, A. H., & Karuppayil, S. M. (2012). Fungal pollution of indoor environments and its management. Saudi journal of biological sciences, 19(4), 405–426. https://doi.org/10.1016/j.sjbs....
 
61.
Kirkinen, T., Wright, K., Suomela, J., & Ilves, K. (2023). Microscopic fibres in soils–The accumulation of textile fibres and animal hairs at the 6th–11th-century CE Kvarnbo Hall settlement site on the Åland Islands, Finland. Journal of Archaeological Science: Reports, 47, 103809. https://doi.org/10.1016/j.jasr....
 
62.
Kuwae, M., Finney, B. P., Shi, Z., Sakaguchi, A., Tsugeki, N., Omori, T., ... & Saito, Y. (2023). Beppu Bay, Japan, as a candidate Global boundary Stratotype Section and Point for the Anthropocene series. The Anthropocene Review, 10(1), 49–86. https://doi.org/10.1177/205301....
 
63.
Lagging, L. M., Garcia, C. E., Westin, J., Wejstål, R., Norkrans, G., Dhillon, A. P., & Lindh, M. (2002). Comparison of serum hepatitis C virus RNA and core antigen concentrations and determination of whether levels are associated with liver histology or affected by specimen storage time. Journal of clinical microbiology, 40(11), 4224–4229. https://doi.org/10.1128/jcm.40....
 
64.
Lambert, S., Sinclair, C., & Boxall, A. (2013). Occurrence, degradation, and effect of polymer-based materials in the environment. Reviews of Environmental Contamination and Toxicology, Volume 227, 1–53. https://doi.org/10.1007/978-3-....
 
65.
Li, H., Tang, M., Wang, J., Dong, L., Wang, L., Liu, Q., ... & Lu, S. (2023). Theoretical and experimental investigation on rapid and efficient adsorption characteristics of microplastics by magnetic sponge carbon. Science of The Total Environment, 897, 165404. https://doi.org/10.1016/j.scit....
 
66.
Liu, H., Huang, X., Zhang, Y., Ye, H., El Hamidi, A., Kocjan, G., ... & Du, M. Q. (2002). Archival fixed histologic and cytologic specimens including stained and unstained materials are amenable to RT-PCR. Diagnostic Molecular Pathology, 11(4), 222–227.
 
67.
Liu, K., Wang, X., Song, Z., Wei, N., & Li, D. (2020). Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Science of the Total Environment, 742, 140523. https://doi.org/10.1016/j.scit....
 
68.
Lotfalipour, F., Javid, A., & Toufigh, V. (2025). Boosting algorithms for predicting the bond properties of timber and fiber reinforced polymer (FRP) under thermal cycling using single-lap shear tests. European Journal of Wood and Wood Products, 83(2), 83. https://doi.org/10.1007/s00107....
 
69.
Martins, G., Rodrigues, E., Tavares, M. I. (2024). Microplásticos como vetores de contaminantes: Modelos cinéticos e isotérmicos de adsorção. [Microplastics as vectors of contaminants: Kinetic and isothermal models of adsorption]. In: Avanços em química e bioquímica: teorias e práticas [Advances in Chemistry and Biochemistry: Theory and Practice]. https://doi.org/10.22533/at.ed....
 
70.
Mašková, L., Smolík, J., Ondráček, J., Ondráčková, L., Travnickova, T., & Havlica, J. (2020). Air quality in archives housed in historic buildings: assessment of concentration of indoor particles of outdoor origin. Building and Environment, 180, 107024. https://doi.org/10.1016/j.buil....
 
71.
Matsuguma, Y., Takada, H., Kumata, H., Kanke, H., Sakurai, S., Suzuki, T., ... & Newman, B. (2017). Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Archives of environmental contamination and toxicology, 73, 230–239. https://doi.org/10.1007/s00244....
 
72.
Menéndez-Pedriza, A., & Jaumot, J. (2020). Interaction of environmental pollutants with microplastics: a critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics, 8(2), 40. https://doi.org/10.3390/toxics....
 
73.
Mesquita, R. F., Lima, C. A. L. O., Lima, L. V. A., Aquino, B. P., & Medeiros, M. S. (2022). Rational use of antimicrobials and impact on the microbiological resistance profile in times of pandemic by COVID-19. Res Soc Dev, 11(1). https://doi.org/10.33448/rsd-v....
 
74.
Modica, L., Lanuza, P., & García-Castrillo, G. (2020). Surrounded by microplastic, since when? Testing the feasibility of exploring past levels of plastic microfibre pollution using natural history museum collections. Marine Pollution Bulletin, 151, 110846. https://doi.org/10.1016/j.marp....
 
75.
Mrosovsky, N., Ryan, G. D., & James, M. C. (2009). Leatherback turtles: the menace of plastic. Marine pollution bulletin, 58(2), 287–289. https://doi.org/10.1016/j.marp....
 
76.
Musso, M. M., Harms, F., Martina, M., Fischer, E. K., Leitl, B., & Castelli, S. T. (2024). Experimental investigation of the fallout dynamics of microplastic fragments in wind tunnel: The BURNIA agenda. Journal of Hazardous Materials Advances, 14, 100433. https://doi.org/10.1016/j.haza....
 
77.
Nałęcz-Jawecki, G., Chojnacka, J., Wawryniuk, M., & Drobniewska, A. (2021). Influence of nano-and small microplastics on ciliated protozoan Spirostomum ambiguum (Müller, 1786) Ehrenberg, 1835. Water, 13(20), 2857. https://doi.org/10.3390/w13202....
 
78.
National Academies of Sciences, Engineering, and Medicine (NASEM). (2020). Biological Collections: Ensuring Critical Research and Education for the 21st Century. 244 p. https://doi.org/10.17226/25592.
 
79.
Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: companions and contaminants. Indoor air, 25(2), 125–156. https://doi.org/10.1111/ina.12....
 
80.
Nihart, A. J., Garcia, M. A., El Hayek, E., Liu, R., Olewine, M., Kingston, J. D., ... & Campen, M. J. (2025). Bioaccumulation of microplastics in decedent human brains. Nature Medicine, 1–6. https://doi.org/10.1038/s41591....
 
81.
Ogbuagu, C. C., Kassem, H., Udiba, U. U., Stead, J. L., & Cundy, A. B. (2022). Role of saltmarsh systems in estuarine trapping of microplastics. Scientific reports, 12(1), 15546. https://doi.org/10.1038/s41598....
 
82.
O'Hanlon, N. J., Bond, A. L., Masden, E. A., Lavers, J. L., & James, N. A. (2021). Measuring nest incorporation of anthropogenic debris by seabirds: An opportunistic approach increases geographic scope and reduces costs. Marine Pollution Bulletin, 171, 112706. https://doi.org/10.1016/j.marp....
 
83.
Oliveira, J., Belchior, A., Da Silva, V. D., Rotter, A., Petrovski, Ž., Almeida, P. L., ... & Gaudêncio, S. P. (2020). Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Frontiers in Marine Science, 7, 567126. https://doi.org/10.3389/fmars.....
 
84.
Omar, A., Taha, A., & El-Wekeel, F. (2019). Microbial degradation of ancient textiles housed in The Egyptian Textile Museum and methods of its control. Egyptian journal of archaeological and restoration Studies, 9(1), 27–37. https://doi.org/10.21608/ejars....
 
85.
Paluselli, A., Fauvelle, V., Galgani, F., & Sempéré, R. (2018). Phthalate release from plastic fragments and degradation in seawater. Environmental science & technology, 53(1), 166–175. https://doi.org/10.1021/acs.es....
 
86.
Pascual-Parra, E., Villoria-Calvo, S., López-Alonso, R., Vigil-Robles, N., & Arias, A. (2025). Microplastic accumulation and histological effects on the Atlantic deep-sea scale-worm Laetmonice filicornis. Marine Pollution Bulletin, 213, 117689. https://doi.org/10.1016/j.marp....
 
87.
Pérez-Flores, J., Borges-Ramírez, M. M., Vargas-Contreras, J. A., & Rendón-von Osten, J. (2024). Inter-annual variation in the microplastics abundance in feces of the Baird's tapir (Tapirus bairdii) from the Selva Maya, México. Science of The Total Environment, 941, 173659. https://doi.org/10.1016/j.scit....
 
88.
Potvin, D. A., & Townsend, K. A. (2025). Birds as Curators of Human Generated Debris. In The Routledge Handbook of Archaeology and Plastics (pp. 422–432). Routledge.
 
89.
Praet, E. (2023). Plastic pollution: archaeological perspective on an Anthropocene climate emergency. World Archaeology, 55(3), 329–347. https://doi.org/10.1080/004382....
 
90.
Prasittisopin, L., Ferdous, W., & Kamchoom, V. (2023). Microplastics in construction and built environment. Developments in the Built Environment, 15, 100188. https://doi.org/10.1016/j.dibe....
 
91.
Priya, K. L., Renjith, K. R., Joseph, C. J., Indu, M. S., Srinivas, R., & Haddout, S. (2022). Fate, transport and degradation pathway of microplastics in aquatic environment—A critical review. Regional Studies in Marine Science, 56, 102647. https://doi.org/10.1016/j.rsma....
 
92.
Rajasekar, A., Xiao, W., Sethuraman, M., Parthipan, P., & Elumalai, P. (2017). Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100. Environmental Science and Pollution Research, 24, 8120–8136. https://doi.org/10.1007/s11356....
 
93.
Rangel-Buitrago, N., Neal, W., & Williams, A. (2022). The Plasticene: time and rocks. Marine Pollution Bulletin, 185, 114358. https://doi.org/10.1016/j.marp....
 
94.
Rednikin, A. R., Frank, Y. A., Rozhin, A. O., Vorobiev, D. S., & Fakhrullin, R. F. (2024). Airborne Microplastics: Challenges, Prospects, and Experimental Approaches. Atmosphere, 15(11), 1380. https://doi.org/10.3390/atmos1....
 
95.
Rintala, H., Pitkäranta, M., & Täubel, M. (2012). Microbial communities associated with house dust. In Advances in applied microbiology (Vol. 78, pp. 75–120). Academic Press. https://doi.org/10.1016/B978-0....
 
96.
Romera-Castillo, C., Lucas, A., Mallenco-Fornies, R., Briones-Rizo, M., Calvo, E., & Pelejero, C. (2023). Abiotic plastic leaching contributes to ocean acidification. Science of The Total Environment, 854, 158683. https://doi.org/10.1016/j.scit....
 
97.
Rotchell, J. M., Mendrik, F., Chapman, E., Flintoft, P., Panter, I., Gallio, G., ... & Schofield, J. (2024). The contamination of in situ archaeological remains: A pilot analysis of microplastics in sediment samples using μFTIR. Science of the Total Environment, 914, 169941. https://doi.org/10.1016/j.scit....
 
98.
Ruiz-Fernández, A. C., Pérez-Bernal, L. H., Sanchez-Cabeza, J. A., Valencia-Castañeda, G., Ontiveros-Cuadras, J. F., & Alonso-Hernández, C. M. (2024). Accelerating microplastic contamination in 210Pb dated sediment cores from an urbanized coastal lagoon (NW Mexico) since the 1990s. Science of The Total Environment, 951, 175613. https://doi.org/10.1016/j.scit....
 
99.
Sáiz-Jiménez, C. (1995). Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia, 11, 161–175. https://doi.org/10.1007/BF0245....
 
100.
Scheerer, S., Ortega‐Morales, O., & Gaylarde, C. (2009). Microbial deterioration of stone monuments—an updated overview. Advances in applied microbiology, 66, 97–139. https://doi.org/10.1016/S0065-....
 
101.
Schmitt, C. J., Cook, J. A., Zamudio, K. R., & Edwards, S. V. (2019). Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philosophical Transactions of the Royal Society B, 374(1763), 20170387. https://doi.org/10.1098/rstb.2....
 
102.
Shah, B., Hunter, S., & Adams, S. (2011). Dust to dust: access to access. V & A conservation journal, (59), 19 p. Available at: http://www.vam.ac.uk/content/j....
 
103.
Soares, G. M., Barros, F., Lanna, E., da Silva, M. V. S., & Cavalcanti, F. F. (2022). Sponges as libraries: increase in microplastics in Cinachyrella alloclada after 36 years. Marine Pollution Bulletin, 185, 114339. https://doi.org/10.1016/j.marp....
 
104.
Sterflinger, K., & Piñar, G. (2013). Microbial deterioration of cultural heritage and works of art—tilting at windmills?. Applied microbiology and biotechnology, 97, 9637–9646. https://doi.org/10.1007/s00253....
 
105.
Sun, L., Sun, S., Bai, M., Wang, Z., Zhao, Y., Huang, Q., ... & Li, X. (2021). Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. Aquatic Toxicology, 236, 105840. https://doi.org/10.1016/j.aqua....
 
106.
Sutkar, P. R., Gadewar, R. D., & Dhulap, V. P. (2023). Recent trends in degradation of microplastics in the environment: A state-of-the-art review. Journal of Hazardous Materials Advances, 11, 100343. https://doi.org/10.1016/j.haza....
 
107.
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: where is all the plastic?. Science, 304(5672), 838–838. https://doi.org/10.1126/scienc....
 
108.
Turner, S., Horton, A. A., Rose, N. L., & Hall, C. (2019). A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology, 61(4), 449–462. https://doi.org/10.1007/s10933....
 
109.
Urbanová, P., Kučíková, K., Klempová, S., Tiño, R., Gabčová, V., & Vizárová, K. (2024). PRESERVATION OF PLASTIC CULTURAL HERITAGE. A REVIEW. International Journal of Conservation Science, 15(2), 893–922. https://doi.org/10.36868/IJCS.....
 
110.
van der Hal, N., Yeruham, E., & Angel, D. L. (2018). Dynamics in microplastic ingestion during the past six decades in herbivorous fish on the Mediterranean Israeli coast. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea (pp. 159–165). Springer International Publishing. https://doi.org/10.1007/978-3-....
 
111.
Verla, A. W., Enyoh, C. E., Verla, E. N., & Nwarnorh, K. O. (2019). Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences, 1(11), 1–30. https://doi.org/10.1007/s42452....
 
112.
Wang, B., Tang, Z., Li, Y., Cai, N., & Hu, X. (2021). Experiments and simulations of human walking-induced particulate matter resuspension in indoor environments. Journal of Cleaner Production, 295, 126488. https://doi.org/10.1016/j.jcle....
 
113.
Wang, N., Wang, Q., Song, S., Sun, Z., Zhao, A., Ali, A., ... & Xu, H. (2024). Microplastics drive community dynamics of periphytic protozoan fauna in marine environments. Environmental Science and Pollution Research, 31(9), 13327–13334. https://doi.org/10.1007/s11356....
 
114.
Wilson, J. M., & Platts-Mills, T. A. (2018). Home environmental interventions for house dust mite. The Journal of Allergy and Clinical Immunology: In Practice, 6(1), 1–7. https://doi.org/10.1016/j.jaip....
 
115.
Wootton, N., Reis-Santos, P., Dowsett, N., Turnbull, A., & Gillanders, B. M. (2021). Low abundance of microplastics in commercially caught fish across southern Australia. Environmental Pollution, 290, 118030. https://doi.org/10.1016/j.envp....
 
116.
World Health Organization (WHO), 2004. Indoor air quality: a guide for facility managers. Ed. Bas. Available: https://extranet.who.int/fctca....
 
117.
Yan, X., Chio, C., Li, H., Zhu, Y., Chen, X., & Qin, W. (2024). Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. Science of The Total Environment, 173141. https://doi.org/10.1016/j.scit....
 
118.
Yin, Q., Gong, P., & Wang, X. (2024). Potential role of microplastic in sediment as an indicator of Anthropocene. Earth Critical Zone, 100016. https://doi.org/10.1016/j.ecz.....
 
119.
Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International journal of environmental research and public health, 17(05), 1509. https://doi.org/10.3390/ijerph....
 
120.
Yoon, Y. H., & Brimblecombe, P. (2000). Clothing as a source of fibres within museums. Journal of Cultural Heritage, 1(4), 445–454. https://doi.org/10.1016/S1296-....
 
121.
Zarantoniello, M., Cattaneo, N., Conti, F., Carrino, M., Cardinaletti, G., Şener, İ., & Olivotto, I. (2024). Mitigating Dietary Microplastic Accumulation and Oxidative Stress Response in European Seabass (Dicentrarchus labrax) Juveniles Using a Natural Microencapsulated Antioxidant. Antioxidants, 13(7), 812. https://doi.org/10.3390/antiox....
 
122.
Zhang, X., Yin, Z., Xiang, S., Yan, H., & Tian, H. (2024). Degradation of polymer materials in the environment and its impact on the health of experimental animals: a review. Polymers, 16(19), 2807. https://doi.org/10.3390/polym1....
 
123.
Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T., & Sillanpää, M. (2020). Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 203, 103118. https://doi.org/10.1016/j.ears....
 
124.
Ziani, K., Ioniță-Mîndrican, C. B., Mititelu, M., Neacșu, S. M., Negrei, C., Moroșan, E., ... & Preda, O. T. (2023). Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients, 15(3), 617. https://doi.org/10.3390/nu1503....
 
Journals System - logo
Scroll to top