Evaluating the potential of normal watering and polyethylene glycol (PEG-6000) on morphological traits of spring wheat seedlings of advance lines
 
More details
Hide details
1
Department of Plant Breeding and Genetics, Shaheed Zulifqar Ali Bhutto Agricultural College Dokri, Sindh, Pakistan
 
2
Department of Plant Breeding and Genetics, Faculty of Agriculture Science, University of Larkano, Sindh, Pakistan
 
3
Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam, Pakistan
 
4
Plant Breeding and Genetics Division Nuclear, Institute of Agriculture, Tandojam, Pakistan
 
5
Department of Environmental Sciences, Sindh Madressatul Islam University Karachi, Karachi, Pakistan
 
 
Submission date: 2024-02-04
 
 
Acceptance date: 2024-02-25
 
 
Publication date: 2025-03-30
 
 
Corresponding author
Nazeer Ali Panhwar
nazir_ipanhwar@yahoo.com
 
 
Trends in Ecological and Indoor Environmental Engineering, 2025;1(3):25-35
 
KEYWORDS
ABSTRACT
Background:
Water stress is crucial factor limiting wheat seedling's, nutritional, growth parameters, and development, ultimately limited production.

Objectives:
The aim of present study was to assess the potential of water stress treatments such as under normal watering (T0), under polyethylene glycol (PEG-6000) at 0.5 MPa solution (T1), and under PEG 6000 at 0.75 MPa solution (T2) on quantitative wheat seeding traits such as shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW), of five winter wheat cultivars and their ten advance (F2) lines, under In situ condition, result indicated that the maximum shoot length (SL) of wheat line TJ-83 × Sarsabz was 19.53 cm under PEG-6000 at 0.5 MPa treatment.

Methods:
The present study was performed under control condition at Nuclear Institute of Agriculture (NIA), Tandojam Pakistan, along with a completely block design with split-plot along with three replication.

Results:
The highest root length (RL) of wheat line TJ-83 × Sarsabz was noted by 26.60 cm under normal watering. The maximum shoot fresh weight (SFW) of wheat cultivar, NIA-Sarang was noted up to 1.62 g under normal watering. The root fresh weight (RFW) of TD-1 cultivar was significantly increased by 1.38 g under normal water condition. The shoot dry weight (SDW) of wheat line TJ-83 × Kiran-95 was dramatically increased by 1.44 g under PEG-6000 at 0.5 MPa treatment. Similarly, shoot dry weight (SDW) of wheat line TJ-83 × Sarsabz was noted by 1.44 g under normal water condition. The root dry weight (RDW) of wheat line TJ-83 × Kiran-95 was significantly increased by 1.26 g under PEG-6000 at 0.5 MPa treatment.

Conclusion:
Overall results revealed that wheat cultivar NIA-Sarang, wheat advance line, TJ-83 × Kiran-95, and TJ-83 × Sarsabz showed drought tolerance, which could be utilized in future breeding scheme of developing drought tolerant wheat genotypes.
REFERENCES (52)
1.
Abah, D., Umbugadu, G. B., & Ochoche, C. O. (2023). Growth rate, trends and forecast analysis of wheat demand-supply gap in nigeria. Nigerian Journal of Agriculture and Agricultural Technology, 3(1), 1–9. https://doi.org/10.59331/njaat....
 
2.
AbdelRahman, M. A. (2023). An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei – Scienze Fisiche e Naturali, 34(3), 767–808. https://doi.org/10.1007/s12210....
 
3.
Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., ... & Tauseef, M. (2022). Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy, 12(2), 287. https://doi.org/10.3390/agrono....
 
4.
Ahmed, H. G. M. D., Sajjad, M., Li, M., Azmat, M. A., Rizwan, M., Maqsood, R. H., & Khan, S. H. (2019). Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability, 11(9), 2584. https://doi.org/10.3390/su1109....
 
5.
Akram, M. (2011). Growth and yield components of wheat under water stress of different growth stages. Bangladesh Journal of Agricultural Research, 36(3), 455–468. https://doi.org/10.3329/bjar.v....
 
6.
Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in agronomy, 88, 223–271. https://doi.org/10.1016/S0065-....
 
7.
Awad, W., Byrne, P. F., Reid, S. D., Comas, L. H., & Haley, S. D. (2018). Great plains winter wheat varies for root length and diameter under drought stress. Agronomy Journal, 110(1), 226–235. https://doi.org/10.2134/agronj....
 
8.
Azadi, H., Keramati, P., Taheri, F., Rafiaani, P., Teklemariam, D., Gebrehiwot, K., ... & Witlox, F. (2018). Agricultural land conversion: Reviewing drought impacts and coping strategies. International Journal of Disaster Risk Reduction, 31, 184–195. https://doi.org/10.1016/j.ijdr....
 
9.
Basal, O., Szabó, A., & Veres, S. (2020). PEG-induced drought stress effects on soybean germination parameters. Journal of Plant Nutrition, 43(12), 1768–1779. https://doi.org/10.1080/019041....
 
10.
Bashir, N., Athar, H. U. R., Kalaji, H. M., Wróbel, J., Mahmood, S., Zafar, Z. U., & Ashraf, M. (2021). Is photoprotection of PSII one of the key mechanisms for drought tolerance in maize?. International Journal of Molecular Sciences, 22(24), 13490. https://doi.org/10.3390/ijms22....
 
11.
Bhattacharya, A., & Bhattacharya, A. (2021). Effect of soil water deficit on growth and development of plants: a review. Soil water deficit and physiological issues in plants, 393–488. https://doi.org/10.1007/978-98....
 
12.
Blum, A. (2016). Stress, strain, signaling, and adaptation–not just a matter of definition. Journal of Experimental Botany, 67(3), 562–565. https://doi.org/10.1093/jxb/er....
 
13.
Boutraa, T., Akhkha, A., Al-Shoaibi, A. A., & Alhejeli, A. M. (2010). Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for science, 3(1), 39–48. https://doi.org/10.1016/S1658-....
 
14.
Brown, R. W., & van Haveren, B. P. (Eds.). (1972). Psychrometry in Water Relations Research: Proceedings of the Symposium on Thermocouple Psychrometers. Utah Agric. Exp. Station, 342 pp.
 
15.
Chachar, Z., Chachar, N. A., Chachar, Q. I., Mujtaba, S., Chachar, G., & Chachar, S. (2016). Identification of drought tolerant wheat genotypes under water deficit conditions. International Journal of Research, 44(22), 206–214.
 
16.
Chen, F., Wang, H., Zhao, F., Wang, R., Qi, Y., Zhang, K., ... & Yang, Y. (2022). The response mechanism and threshold of spring wheat to rapid drought. Atmosphere, 13(4), 596. https://doi.org/10.3390/atmos1....
 
17.
D’souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert opinion on drug delivery, 13(9), 1257–1275. https://doi.org/10.1080/174252....
 
18.
Evers, J. B., Vos, J., Yin, X., Romero, P., Van Der Putten, P. E. L., & Struik, P. C. (2010). Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. Journal of Experimental Botany, 61(8), 2203–2216. https://doi.org/10.1093/jxb/er....
 
19.
Ghaffar, A., Hussain, N., Ajaj, R., Shahin, S. M., Bano, H., Javed, M., ... & Athar, H. U. R. (2023). Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. Frontiers in Plant Science, 14, 1123080. https://doi.org/10.3389/fpls.2....
 
20.
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9(7), 352. https://doi.org/10.3390/agrono....
 
21.
Grzesiak, M. T., Waligórski, P., Janowiak, F., Marcińska, I., Hura, K., Szczyrek, P., & Głąb, T. (2013). The relations between drought susceptibility index based on grain yield (DSI GY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiologiae Plantarum, 35, 549–565. https://doi.org/10.1007/s11738....
 
22.
Halder, T., Choudhary, M., Liu, H., Chen, Y., Yan, G., & Siddique, K. H. (2022). Wheat proteomics for abiotic stress tolerance and root system architecture: current status and future prospects. Proteomes, 10(2), 17. https://doi.org/10.3390/proteo....
 
23.
Hossain, A., Farhad, M., Aonti, A. J., Kabir, M. P., Hossain, M. M., Ahmed, B., ... & Azim, J. (2025). Cereals production under changing climate. In Challenges and Solutions of Climate Impact on Agriculture (pp. 63–83). Academic Press. https://doi.org/10.1016/B978-0....
 
24.
Hussain, N., Sohail, Y., Shakeel, N., Javed, M., Bano, H., Gul, H. S., ... & Ajaj, R. (2022). Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Scientific Reports, 12(1), 12677. https://doi.org/10.1038/s41598....
 
25.
Jovanovic, N., Pereira, L. S., Paredes, P., Pôças, I., Cantore, V., & Todorovic, M. (2020). A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural water management, 239, 106267. https://doi.org/10.1016/j.agwa....
 
26.
Kalaji, H. M., Račková, L., Paganová, V., Swoczyna, T., Rusinowski, S., & Sitko, K. (2018). Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill?. Environmental and Experimental Botany, 152, 149–157. https://doi.org/10.1016/j.enve....
 
27.
Khan, A. S., Sami Ul-Allah, S. U. A., & Sajjad Sadique, S. S. (2010). Genetic variability and correlation among seedling traits of wheat (Triticum aestivum) under water stress. International Journal of Agriculture and Biology, 12, 247–250.
 
28.
Khan, M. I., Shabbir, G., Akram, Z., Shah, M. K. N., Ansar, M., Cheema, N. M., & Iqbal, M. S. (2013). Character association studies of seedling traits in different wheat genotypes under moisture stress conditions. SABRAO Journal of Breeding and Genetics 45 (3), 458–467.
 
29.
Khan, T., Mureed F., Anwar, M., Khan, O., Ali, M., & Ullah, W. (2023). Determination of Suitable Probability Distribution of Rainfall in Pakistan Considering Multiplicity. Trends in Ecological and Indoor Environment Engineering, 1(1), 24–34. https://doi.org/10.62622/TEIEE....
 
30.
Khurana, E. K. T. A., & Singh, J. S. (2001). Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental conservation, 28(1), 39–52. https://doi.org/10.1017/S03768....
 
31.
Koskosidis, A., Ebrahim, K. H. A. H., Mavromatis, A., Pavli, O., & Vlachostergios, D. N. (2020). Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 294–304. https://doi.org/10.15835/nbha4....
 
32.
Kuzminska, E., Оmelchuk, S., Karlova, E., Grinzovskyy, A. (2018). Drug-free modalities of iron deficiency conditions in Ukraine. Georgian medical news, 279, 175–180.
 
33.
Li, M., & Kim, C. (2021). Chloroplast ROS and stress signaling. Plant Communities 3 (1), 100264. 10.1016/j.xplc.2021.100264.
 
34.
Liu, X., Yang, Z., Hu, W., Liu, S., Sun, R., Jin, S., ... & Deng, X. (2024). A genome-wide association study identifies novel QTL for wheat yield stability under drought stress. Current Plant Biology, 37, 100326. https://doi.org/10.1016/j.cpb.....
 
35.
Magar, M. M., Parajuli, A., Sah, B. P., Shrestha, J., Sakh, B. M., Koirala, K. B., & Dhital, S. P. (2019). Effect of PEG induced drought stress on germination and seedling traits of maize (Zea mays L.) lines. Türk Tarım ve Doğa Bilimleri Dergisi, 6(2), 196–205. https://doi.org/10.30910/turkj....
 
36.
Ozturk, M., Turkyilmaz Unal, B., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia plantarum, 172(2), 1321–1335. https://doi.org/10.1111/ppl.13....
 
37.
Pamungkas, S. S. T., & Farid, N. (2022). Drought stress: responses and mechanism in plants. Reviews in Agricultural Science, 10, 168–185. https://doi.org/10.7831/ras.10....
 
38.
Panhwar, N. A., Ahmed, S. R., Lahori, A. H., Mierzwa-Hersztek, M., Afzal, A., Vambol, V., ... & Vambol, S. (2024). Statistical Analysis of Association, Heterosis, and Inheritance of Grain Yield Contributing Quantitative Traits in Segregating Lines of Wheat (textit {Triticum aestivum L.}). Journal of Environmental Accounting and Management, 12(01), 13–26. https://doi.org/10.5890/JEAM.2....
 
39.
Panhwar, N. A., Baloch, G. M., Soomro, Z. A., Sial, M. A., Panhwar, S. A., Afzal, A., & Lahori, A. H. (2022). 3. Evaluation of heterosis and its association among morpho-physiological traits of ten wheat genotypes under water stress. Pure and Applied Biology (PAB), 11(3), 709–724. http://dx.doi.org/10.19045/bsp....
 
40.
Panhwar, N. A., Mierzwa-Hersztek, M., Baloch, G. M., Soomro, Z. A., Sial, M. A., Demiraj, E., ... & Lahori, A. H. (2021). Water stress affects the some morpho-physiological traits of twenty wheat (Triticum aestivum L.) genotypes under field condition. Sustainability, 13(24), 13736. https://doi.org/10.3390/su1324....
 
41.
Priya, M., Dhanker, O. P., Siddique, K. H., HanumanthaRao, B., Nair, R. M., Pandey, S., ... & Nayyar, H. (2019). Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics, 132, 1607–1638. https://doi.org/10.1007/s00122....
 
42.
Ramón Vallejo, V., Smanis, A., Chirino, E., Fuentes, D., Valdecantos, A., & Vilagrosa, A. (2012). Perspectives in dryland restoration: approaches for climate change adaptation. New Forests, 43(5), 561–579. https://doi.org/10.1007/s11056....
 
43.
Rodríguez, A., van Grinsven, H. J., van Loon, M. P., Doelman, J. C., Beusen, A. H., & Lassaletta, L. (2024). Costs and benefits of synthetic nitrogen for global cereal production in 2015 and in 2050 under contrasting scenarios. Science of the Total Environment, 912, 169357. https://doi.org/10.1016/j.scit....
 
44.
Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed science research, 24(1), 1–15. https://doi.org/10.1017/S09602....
 
45.
Roush, K. (2023). Global hunger. AJN the American Journal of Nursing, 123(1), 17–18. https://doi.org/10.1097/01.NAJ....
 
46.
Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International journal of molecular sciences, 20(13), 3137. https://doi.org/10.3390/ijms20....
 
47.
Shahid, I., & Venturi, L. A. B. (2023). Analysis of climate changes and its impact on the yield of major food crops and food security in Pakistan. Journal of Xi’an Shiyou University, Natural Science Edition, 19 (5), 465–502.
 
48.
Tahir, N. A. R., Rasul, K. S., Lateef, D. D., Aziz, R. R., & Ahmed, J. O. (2024). In vitro evaluation of Iraqi Kurdistan tomato accessions under drought stress conditions using polyethylene glycol-6000. Life, 14(11), 1502. https://doi.org/10.3390/life14....
 
49.
Tefera, A., Kebede, M., Tadesse, K., & Getahun, T. (2021). Morphological, physiological, and biochemical characterization of drought‐tolerant wheat (Triticum spp.) varieties. International Journal of Agronomy, 2021(1), 8811749. https://doi.org/10.1155/2021/8....
 
50.
Tsimilli-Michael, M. (2020). Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica, 58(SI), 275–292. https://doi.org/10.32615/ps.20....
 
51.
Zhang, X., Yang, H., & Du, T. (2022). Osmotic adjustment of tomato under mild soil salinity can enhance drought resistance. Environmental and Experimental Botany, 202, 105004. https://doi.org/10.1016/j.enve....
 
52.
Zhu, J., Cai, D., Wang, J., Cao, J., Wen, Y., He, J., ... & Zhang, S. (2021). Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions. Oil Crop Science, 6(2), 97–104. https://doi.org/10.1016/j.ocsc....
 
Journals System - logo
Scroll to top