Background: Environmental contamination from US EPA Superfund sites has long posed a serious threat to public health and environmental sustainability. Increased environmental risk in areas near US EPA Superfund sites is evidenced by studies that have found that these areas are characterized by higher levels of toxic substances in the soil and air. Addressing the hazards these sites pose requires thoughtful planning and creative approaches that balance environmental restoration with community development goals. Reclaiming abandoned industrial and mining sites is imperative because it is an opportunity to enhance public safety, restore ecosystems and support communities.
Objectives: The study aims to identify the best biological remediation methods for contaminated sites, with a particular focus on the most common contaminants documented in the US EPA Superfund site database. The study also aims to develop potential strategies to improve the environmental safety of the US EPA Superfund site.
Methods: The current study is based on peer-reviewed articles published in English over a 10-year period from January 2014 to December 2023 indexed in the abstract databases Scopus, Google Scholar and PubMed (NCBI). A combination of relevant keywords was used to search for sources. Publications selected for research review were not limited to any particular geographic location of US EPA Superfund sites or investigators.
Results: The most frequently studied pollutants (in descending order of frequency of mention in scientific studies) were polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) etc. The largest number of publications aimed at restoring US EPA Superfund lands using biological methods occurred in the period 2016–2018, with bioremediation, biosparging and phytoremediation leading among the biological techniques used. A detailed analysis of the studies found showed that these results were consistent with each other, since it was the most frequently studied methods that were used to remove the pollutants in question.
Conclusion: By equipping bioremediation approaches with essential components, this resource enables swift and effective responses to pollution incidents, minimizing potential adverse impacts on public health, waterways, and groundwater systems caused by industrial and human activities. Combining biological approaches with robust risk mitigation strategies can further enhance environmental protection and safeguard nearby populations. The provided concentrated information on various biological remediation practices, which are classified based on certain criteria, forms the basis of a strategy to improve environmental safety and implement sustainable alternatives for safe use of previously contaminated sites.
REFERENCES(138)
1.
Abdullah, S. R. S., Al-Baldawi, I. A., Almansoory, A. F., Purwanti, I. F., Al-Sbani, N. H., & Sharuddin, S. S. N. (2020). Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere, 247, 125932, 1–19. https://doi.org/10.1016/j.chem....
Abena, M. T. B., Li, T., Shah, M. N., & Zhong, W. (2019). Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere, 234, 864–874. https://doi.org/10.1016/j.chem....
Adam, A. A., Sackey, L. N., & Ofori, L. A. (2022). Risk assessment of heavy metals concentration in cereals and legumes sold in the Tamale Aboabo market, Ghana. Heliyon, 8(8), e10162. https://doi.org/10.1016/j.heli....
Akinwole, P. O., Shaffer, N. G., Pasini, C. Z., Carr, K. M., Brown, K. L., & Owojori, O. J. (2024). Ecotoxicity evaluation using the avoidance response of the oribatid mite Oppia nitens (Acari: Oribatida) in bioplastics, microplastics, and contaminated Superfund field sites. Chemosphere, 359, 142301. https://doi.org/10.1016/j.chem....
Al-Baldawi, I. A., Abdullah, S. S., Anuar, N., & Mushrifah, I. (2017). Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. International Journal of Environmental Science and Technology, 14(1), 75–84. https://doi.org/10.1007/s13762....
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals–concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chem....
Ali, M., Song, X., Ding, D., Wang, Q., Zhang, Z., and Tang, Z. (2022). Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environmental Pollution, 295, 118686. https://doi.org/10.1016/j.envp....
Aloud, S. S., Alotaibi, K. D., Almutairi, K. F., & Albarakah, F. N. (2022). Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia. Sustainability, 14(10), 5993. https://doi.org/10.3390/su1410....
Anand, V., Kaur, J., Srivastava, S., Bist, V., Singh, P., and Srivastava, S. (2022). Arsenotrophy: A pragmatic approach for arsenic bioremediation. Journal of Environmental Chemical Engineering, 10, 107528. https://doi.org/10.1016/j.jece....
Arachchige, G. R. P., Thorstensen, E. B., Coe, M., McKenzie, E. J., O'Sullivan, J. M., & Pook, C. J. (2021). LC-MS/MS quantification of fat soluble vitamers – A systematic review. Analytical Biochemistry, 613, 113980. https://doi.org/10.1016/j.ab.2....
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques – classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 1–18. https://doi.org/10.1007/s11274....
Babar, Z., Khan, M., Chotana, G. A., Murtaza, G., and Shamim, S. (2021). Evaluation of the Potential Role of Bacillus altitudinis MT422188 in Nickel Bioremediation from Contaminated Industrial Effluents. Sustainability 13, 7353. https://doi.org/10.3390/su1313....
Barbato, R. A., & Reynolds, C. M. (2021). Bioremediation of contaminated soils. In Principles and applications of soil microbiology (pp. 607–631). Elsevier. https://doi.org/10.1016/B978-0....
Beattie, R. E., Henke, W., Davis, C., Mottaleb, M. A., Campbell, J. H., & McAliley, L. R. (2017). Quantitative analysis of the extent of heavy-metal contamination in soils near Picher, Oklahoma, within the Tar Creek Superfund Site. Chemosphere, 172, 89–95. https://doi.org/10.1016/j.chem....
Biswas, B., Sarkar, B., Rusmin, R., and Naidu, R. (2015). Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environment International, 85, 168–181. https://doi.org/10.1016/j.envi....
Bovio, E., Gnavi, G., Prigione, V., Spina, F., Denaro, R., Yakimov, M., & Varese, G. C. (2017). The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in Bioremediation. Science of the Total Environment, 576, 310–318. https://doi.org/10.1016/j.scit....
Calderon, R., García-Hernández, J., Palma, P., Leyva-Morales, J. B., Godoy, M., Zambrano-Soria, M., ... & Valenzuela, G. (2023). Heavy metals and metalloids in organic and conventional vegetables from Chile and Mexico: Implications for human health. Journal of Food Composition and Analysis, 123, 105527. https://doi.org/10.1016/j.jfca....
Carvajal, A., Akmirza, I., Navia, D., Pérez, R., Muñoz, R., & Lebrero, R. (2018). Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions. Journal of Environmental Management, 214, 125–136. https://doi.org/10.1016/j.jenv....
Chang, C. H., Yang, H. Y., Chen, S. K., Hung, J. M., Lu, C. J., & Liu, M. H. (2018). Electrokinetic-enhanced bioremediation of tetrachloroethylene. International Biodeterioration & Biodegradation, 132, 251–258. https://doi.org/10.1016/j.ibio....
Chang, C. H., Yang, H. Y., Hung, J. M., Lu, C. J., & Liu, M. H. (2017). Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system. International Biodeterioration & Biodegradation, 117, 150–157. https://doi.org/10.1016/j.ibio....
Chen, Z., Muhammad, I., Zhang, Y., Hu, W., Lu, Q., Wang, W., ... & Hao, M. (2021). Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China. Science of the Total Environment, 766, 142663. https://doi.org/10.1016/j.scit....
Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C., & Chen, K. L. (2015). Phytoremediation of lead using corn in contaminated agricultural land-An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77. https://doi.org/10.1016/j.ecoe....
Ciampi, P., Esposito, C., Bartsch, E., Alesi, E. J., Rehner, G., & Papini, M. P. (2022). Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW). Heliyon, 8(11), e11402. https://doi.org/10.1016/j.heli....
Clarkson, M. A., & Abubakar, S. I. (2015). Bioremediation and biodegradation of hydrocarbon contaminated soils: a review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(11), 38–45.
Cornu, J. Y., Huguenot, D., Jézéquel, K., Lollier, M., & Lebeau, T. (2017). Bioremediation of copper-contaminated soils by bacteria. World Journal of Microbiology and Biotechnology, 33, 1–9. https://doi.org/10.1007/s11274....
Coulon, F., Al Awadi, M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., & Paton, G. I. (2010). When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158(10), 3032–3040. https://doi.org/10.1016/j.envp....
Dash, H. R., Mangwani, N., & Das, S. (2014). Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environmental Science and Pollution Research, 21, 2642–2653. https://doi.org/10.1007/s11356....
de Souza, T. D., Borges, A. C., Braga, A. F., Veloso, R. W., & de Matos, A. T. (2019). Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. Chemosphere, 234, 402–408. https://doi.org/10.1016/j.chem....
Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H. R., Miri, M., Baghani, A. N., ... & Rashidi, M. (2018). Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicology and Environmental Safety, 155, 133–143. https://doi.org/10.1016/j.ecoe....
Deng, J., Fu, D., Hu, W., Lu, X., Wu, Y., and Bryan, H. (2020). Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Bioresource Technology, 303, 122963. https://doi.org/10.1016/j.bior....
Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 27(2), 1319–1333. https://doi.org/10.1007/s11356....
Dindar, E., Şağban, F. O. T., & Başkaya, H. S. (2016). Biodegradation of used engine oil in a wastewater sludge-amended agricultural soil. Turkish Journal of Agriculture and Forestry, 40(4), 631–641. https://doi.org/10.3906/tar-15....
Donald, A. N., Donald, A. N., Raphael, P. B., Raphael, P. B., Olumide, O. J., & Amarachukwu, O. F. (2022). The synopsis of environmental heavy metal pollution. American Journal of Environmental Sciences, 18, 125–134.
Echereme, C. B., Igboabuchi, N. A., & Izundu, A. I. (2018). Phytoremediation of heavy metals and persistent organic pollutants (POPs): A review. Human Journals, 10(4), 107–125.
Ehsan, N., Nawaz, R., Ahmad, S., Khan, M. M., & Hayat, J. (2016). Phytoremediation of chromium contaminated soil by an ornamental plant Vinca (Vinca rosea L.). Journal of Environmental and Agricultural Sciences, 7, 29–34.
Einolghozati, M., Talebi-Ghane, E., & Amirsadeghi, S. (2022). Evaluation of polycyclic aromatic hydrocarbons (PAHs) in processed cereals: A meta-analysis study, systematic review, and health risk assessment. Heliyon, 8(12). https://doi.org/10.1016/j.heli....
Escobar-Alvarado, L. F., Vaca-Mier, M., López-Callejas, R., & Rojas-Valencia, M. N. (2018). Efficiency of Opuntia ficus in the phytoremediation of a soil contaminated with used motor oil and lead, compared to that of Lolium perenne and Aloe barbadensis. International Journal of Phytoremediation, 20(2), 184–189. https://doi.org/10.1080/152265....
Eskander, S., & Saleh, H. (2017). Phytoremediation: an overview. Environmental Science and Engineering, Soil Pollution and Phytoremediation, 11, 124–161.
Fahid, M., Arslan, M., Shabir, G., Younus, S., Yasmeen, T., Rizwan, M., & Afzal, M. (2020). Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere, 240, 124890. https://doi.org/10.1016/j.chem....
Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., and Figueroa, L. I. C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 208, 139–148. https://doi.org/10.1016/j.chem....
Galitskaya, P., Akhmetzyanova, L., & Selivanovskaya, S. (2016). Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation. Biogeosciences, 13(20), 5739–5752. https://doi.org/10.5194/bg-13-....
Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176(1), 20–30. https://doi.org/10.1016/j.plan....
Ghosh, A., and Saha, P. D. (2013). Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. Journal of Environmental Chemical Engineering, 1, 159–163. https://doi.org/10.1016/j.jece....
Gogoi, N. M., Baroowa, B., & Gogoi, N. (2021). Ecological Tools for Remediation of Soil Pollutants. In Bioremediation Science From Theory to Practice (pp. 57–78). CRC Press.
Gomez, F., & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration & Biodegradation, 89, 103–109. https://doi.org/10.1016/j.ibio....
Hadiuzzaman, M. (2019). Sustainable phytoremediation of chromium (VI) contaminated soil and tetrachloroethylene (PCE)/trichloroethylene (TCE) contaminated groundwater from a Superfund site using sunflower (Helianthus annuus L.). Available: https://opensiuc.lib.siu.edu/t....
Halfadji, A., Portet-Koltalo, F., Touabet, A., Le Derf, F., Morin, C., & Merlet-Machour, N. (2022). Phytoremediation of PCB: Contaminated Algerian soils using native agronomics plants. Environmental Geochemistry and Health, 44(1), 117–132. https://doi.org/10.1007/s10653....
Heidari, P., Mazloomi, F., and Sanaeizade, S. (2020). Optimization Study of Nickel and Copper Bioremediation by Microbacterium oxydans Strain CM3 and CM7. Soil and Sediment Contamination: An International Journal, 29, 438–451. https://doi.org/10.1080/153203....
Higgins J. P. T, Thomas J., Chandler J. et al, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.0. Cochrane Collaboration, 2019. Available: https://training.cochrane.org/....
Hobson, A. M., Frederickson, J., & Dise, N. B. (2005). CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Management, 25(4), 345–352. https://doi.org/10.1016/j.wasm....
Irshad, S., Xie, Z., Mehmood, S., Nawaz, A., Ditta, A., & Mahmood, Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environmental Science and Pollution Research, 28, 18870–18892. https://doi.org/10.1007/s11356....
Jain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands. Journal of Environmental Management, 272, 111057. https://doi.org/10.1016/j.jenv....
Javed, M. T., Tanwir, K., Akram, M. S., Shahid, M., Niazi, N. K., & Lindberg, S. (2019). Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In Cadmium Toxicity and Tolerance in Plants (pp. 495–529). Academic Press.
Jiang, Y., Brassington, K. J., Prpich, G., Paton, G. I., Semple, K. T., Pollard, S. J., & Coulon, F. (2016). Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere, 161, 300–307. https://doi.org/10.1016/j.chem....
Jiang, Y., Jiang, S., Li, Z., Yan, X., Qin, Z., & Huang, R. (2019). Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L.) cultivars. Ecological Engineering, 129, 38–44. https://doi.org/10.1016/j.ecol....
Kao, C. M., Chen, C. Y., Chen, S. C., Chien, H. Y., & Chen, Y. L. (2008). Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere, 70(8), 1492–1499. https://doi.org/10.1016/j.chem....
Karouna-Renier, N. K., Rao, K. R., Lanza, J. J., Davis, D. A., & Wilson, P. A. (2007). Serum profiles of PCDDs and PCDFs, in individuals near the Escambia Wood Treating Company Superfund site in Pensacola, FL. Chemosphere, 69(8), 1312–1319. https://doi.org/10.1016/j.chem....
Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexp....
Khanverdiluo, S., Talebi-Ghane, E., & Heshmati, A. (2021). The concentration of polycyclic aromatic hydrocarbons (PAHs) in mother milk: a global systematic review, meta-analysis and health risk assessment of infants. Saudi Journal of Biological Sciences, 28(12), 6869–6875. https://doi.org/10.1016/j.sjbs....
Kiaghadi, A., Rifai, H. S., & Dawson, C. N. (2021). The presence of Superfund sites as a determinant of life expectancy in the United States. Nature Communications, 12(1), 1947. https://doi.org/10.1038/s41467....
Koner, S., Chen, J. S., Hsu, B. M., Rathod, J., Huang, S. W., Chien, H. Y., & Chan, M. W. (2022). Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. Journal of Hazardous Materials, 424, 127266. https://doi.org/10.1016/j.jhaz....
Koshlaf, E., & Ball, A. S. (2017). Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3(1), 25. https://doi.org/10.3934/microb....
Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In Microbial bioprospecting for sustainable development (pp. 115–136). Springer, Singapore. https://doi.org/10.1007/978-98....
Kumari, S., Regar, R. K., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technology, 254, 174–179. https://doi.org/10.1016/j.bior....
Li, S., Goodrich, J. A., Costello, E., Walker, D. I., Cardenas-Iniguez, C., Chen, J. C., ... & Chatzi, L. (2025). Examining disparities in PFAS plasma concentrations: Impact of drinking water contamination, food access, proximity to industrial facilities and superfund sites. Environmental Research, 264, 120370. https://doi.org/10.1016/j.heal....
Lim, M. W., Von Lau, E., & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions. Marine Pollution Bulletin, 109(1), 14–45. https://doi.org/10.1016/j.marp....
Macaulay, B. M., & Rees, D. (2014). Bioremediation of oil spills: a review of challenges for research advancement. Annals of Environmental Science, 8, 9–37. http://hdl.handle.net/2047/d20....
Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoe....
Maletić, S. P., Beljin, J. M., Rončević, S. D., Grgić, M. G., & Dalmacija, B. D. (2019). State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. Journal of Hazardous Materials, 365, 467–482. https://doi.org/10.1016/j.jhaz....
Michael-Igolima, U., Abbey, S. J., & Ifelebuegu, A. O. (2022). A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 9, 100319. https://doi.org/10.1016/j.enva....
Minari, G. D., Saran, L. M., Lima Constancio, M. T., Correia da Silva, R., Rosalen, D. L., José de Melo, W., et al. (2020). Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicology and Environmental Safety, 204, 111038. https://doi.org/10.1016/j.ecoe....
Mitra, A., Chatterjee, S., Kataki, S., Rastogi, R. P., & Gupta, D. K. (2021). Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environmental Science and Pollution Research, 28, 14271–14284. https://doi.org/10.1007/s11356....
Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., & Rossi, F. (2017). Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 24, 11053–11060. https://doi.org/10.1007/s11356....
Mooney, F. A., Kelly, J. R., Warren, J. L., & Deziel, N. C. (2025). Demographic inequities and cumulative environmental burdens within communities near superfund sites on Long Island, New York. Health & Place, 91, 103409. https://doi.org/10.1016/j.heal....
Muddarisna, N., Krisnayanti, B. D., Utami, S. R., & Handayanto, E. (2013). Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Applied Ecology and Environmental Sciences, 1(3), 27–32. https://doi.org/10.12691/aees-....
Naeem, N., Tabassum, I., Majeed, A., & Amjad, M. (2020). Technologies of Soil Contaminated with Heavy Metals. Acta Scientific Agriculture, 4, 01–05. https://doi.org/10.31080/ASAG.....
Nguyen Van, P., Thi Hong Truong, H., Pham, T. A., Le Cong, T., Le, T., and Thi Nguyen, K. C. (2021). Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov. Mycobiology, 49, 507–520. https://doi.org/10.1080/122980....
Niazi, N. K., Bashir, S., Bibi, I., Murtaza, B., Shahid, M., Javed, M. T., ... & Murtaza, G. (2016). Phytoremediation of arsenic-contaminated soils using arsenic hyperaccumulating ferns. Phytoremediation: Management of Environmental Contaminants, 3, 521–545. https://doi.org/10.1007/978-3-....
Nijenhuis, I., & Kuntze, K. (2016). Anaerobic microbial dehalogenation of organohalides—state of the art and remediation strategies. Current Opinion in Biotechnology, 38, 33–38. https://doi.org/10.1016/j.copb....
Nogueira, J. P., da Silva Souza, I. H., Andrade, J. K. S., & Narain, N. (2022). Status of research on lactones used as aroma: a bibliometric review. Food Bioscience, 50, 102004. https://doi.org/10.1016/j.fbio....
Nwankwegu, A. S., Zhang, L., Xie, D., Onwosi, C. O., Muhammad, W. I., Odoh, C. K., ... & Idenyi, J. N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. https://doi.org/10.1016/j.jenv....
Ojo, O. B., & Sridhar, M. K. C. (2020). Phytoremediation potential of Nauclea diderrichii (De Wild and Th. Dur.) seedlings grown in spent engine oil contaminated soil. Bangladesh Journal of Scientific and Industrial Research, 55(4), 261–272. https://doi.org/10.3329/bjsir.....
Peng, W., Li, X., Song, J., Jiang, W., Liu, Y., and Fan, W. (2018). Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter Sphaeroides. Chemosphere, 197, 33–41. https://doi.org/10.1016/j.chem....
Pino, N. J., Múnera, L. M., & Peñuela, G. A. (2019). Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. International Journal of Phytoremediation, 21(4), 316–324. https://doi.org/10.1080/152265....
Pushkar, B., Sevak, P., Parab, S., and Nilkanth, N. (2021). Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 287, 112279. https://doi.org/10.1016/j.jenv....
Raj, D., Kumar, A., & Maiti, S. K. (2020). Brassica juncea (L.) Czern.(Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation, 22(7), 733–744. https://doi.org/10.1080/152265....
Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K., Ng, H. S., Munawaroh, H. S. H., ... & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369. https://doi.org/10.1016/j.chem....
Ranieri, E., Tursi, A., Giuliano, S., Spagnolo, V., Ranieri, A. C., & Petrella, A. (2020). Phytoextraction from chromium-contaminated soil using Moso Bamboo in Mediterranean conditions. Water, Air, & Soil Pollution, 231, 1–12. https://doi.org/10.1007/s11270....
Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411.
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587–599. https://doi.org/10.1016/j.jhaz....
Robichaud, K., Stewart, K., Labrecque, M., Hijri, M., Cherewyk, J., & Amyot, M. (2019). An ecological microsystem to treat waste oil contaminated soil: Using phytoremediation assisted by fungi and local compost, on a mixed-contaminant site, in a cold climate. Science of the Total Environment, 672, 732–742. https://doi.org/10.1016/j.scit....
Saha, J. K., Selladurai, R., Coumar, M. V., Dotaniya, M. L., Kundu, S., & Patra, A. K. (2017). Status of soil pollution in India. In Soil pollution-an emerging threat to agriculture (pp. 271–315). Springer, Singapore. https://doi.org/10.1007/978-98....
Sánchez-Castro, I., Molina, L., Prieto-Fernández, M. Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil-Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heli....
Sanga, V. F., Fabian, C., & Kimbokota, F. (2023). Heavy metal pollution in leachates and its impacts on the quality of groundwater resources around Iringa municipal solid waste dumpsite. Environmental Science and Pollution Research, 30(3), 8110–8122. https://doi.org/10.1007/s11356....
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710–721. https://doi.org/10.1016/j.chem....
Sayara, T., and Sánchez, A. (2020). Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. Applied Sciences, 10, 3684. https://doi.org/10.3390/app101....
Schneider, D., & Greenberg, M. R. (2023). Remediating and reusing abandoned mining sites in US metropolitan areas: Raising visibility and value. Sustainability, 15(9), 7080. https://doi.org/10.3390/su1509....
Sevak, P. I., Pushkar, B. K., & Kapadne, P. N. (2021). Lead pollution and bacterial bioremediation: a review. Environmental Chemistry Letters, 19(6), 4463–4488. https://doi.org/10.1007/s10311....
Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace Metals in the Environment-New Approaches and Recent Advances. IntechOpen. 1–17. http://dx.doi.org/10.5772/inte....
Sher, S., and Rehman, A. (2019). Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Applied Microbiology and Biotechnology, 103, 6007–6021. https://doi.org/10.1007/s00253....
Shoaei, F., Talebi-Ghane, E., Amirsadeghi, S., & Mehri, F. (2023). The investigation of polycyclic aromatic hydrocarbons (PAHs) in milk and its products: A global systematic review, meta-analysis and health risk assessment. International Dairy Journal, 142, 105645. https://doi.org/10.1016/j.idai....
Taufikurahman, T., Pradisa, M. A. S., Amalia, S. G., & Hutahaean, G. E. M. (2019). Phytoremediation of chromium (Cr) using Typha angustifolia L., Canna indica L. and Hydrocotyle umbellata L. in surface flow system of constructed wetland. In IOP Conference Series: Earth and Environmental Science, 308 (1), p. 012020. IOP Publishing.
Thacharodi, A., Hassan, S., Singh, T., Mandal, R., Chinnadurai, J., Khan, H. A., et al. (2023). Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. Chemosphere, 328, 138498. https://doi.org/10.1016/j.chem....
Thomé, A., Reginatto, C., Cecchin, I., & Colla, L. M. (2014). Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. Journal of Environmental Engineering, 140(11), 06014005. https://doi.org/10.1061/(ASCE)....
U. S. Environmental Protection Agency (USEPA) (2000) Introduction to Phytoremediation. EPA 600-R-99-107, Office of Research and Development. Available: http://clu-in.org/download/rem....
Uguru, H. & Udubra E.A. (2021). Optimizing the Bioremediation of Petroleum Hydrocarbons Contaminated Soil. International Journal of Innovative Environmental Studies Research, 9(3), 47–53.
Uguru, H., Akpokodje, O. I., & Donald, A. N. (2022). Using rice husks manure and seaweed extract to optimize the phytoremediation efficiency of guinea grass (Megathyrsus maximus). Journal of Engineering Innovations and Applications, 1(1), 7–12. https://doi.org/10.31248/JEIA2....
Underwood, J. C., Akob, D. M., Lorah, M. M., Imbrigiotta, T. E., Harvey, R. W., & Tiedeman, C. R. (2022). Microbial community response to a bioaugmentation test to degrade trichloroethylene in a fractured rock aquifer, Trenton, NJ. FEMS Microbiology Ecology, 98(7), fiac077. https://doi.org/10.1093/femsec....
Valizadeh, S., Lee, S. S., Baek, K., Choi, Y. J., Jeon, B. H., Rhee, G. H., ... & Park, Y. K. (2021). Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. Environmental Research, 200, 111757. https://doi.org/10.1016/j.envr....
Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1), 319–334. https://doi.org/10.1007/s11104....
Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794. https://doi.org/10.1007/s11356....
Volarić, A., Svirčev, Z., Tamindžija, D., & Radnović, D. (2021). Microbial bioremediation of heavy metals. Hemijska Industrija, 75(2), 103–115. https://doi.org/10.2298/HEMIND....
Watts, R. J., & Teel, A. L. (2014). 11.1 - Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation. In Treatise on Geochemistry (Second Edition), Editor(s): Heinrich D. Holland, Karl K. Turekian. Elsevier, 1–12. https://doi.org/10.1016/B978-0....
Wu, Y., Trejo, H. X., Chen, G., & Li, S. (2021). Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review. Environment, Development and Sustainability, 1–31. https://doi.org/10.1007/s10668....
Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological Engineering, 120, 274–298. https://doi.org/10.1016/j.ecol....
Yamamura, S., &Amachi, S. (2014). Microbiology of inorganic arsenic: From metabolism to bioremediation. Journal of Bioscience and Bioengineering, 118, 1–9. https://doi.org/10.1016/j.jbio....
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2....
Zabbey, N., Sam, K. & Onyebuchi, A.T (2017). Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Science of Total Environment, 1–14 http://dx.doi.org/10.1016/j.sc....
Zafra, G., Moreno-Montaño, A., Absalón, Á. E., & Cortés-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environmental Science and Pollution Research, 22, 1034–1042. https://doi.org/10.1007/s11356....
Zhang, S., Li, Y., & Wang, S. (2022b). Microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins: Pathways and features unravelled via electron density. Journal of Hazardous Materials, 424, 127673. https://doi.org/10.1016/j.jhaz....
Zheng, W., Zhao, H., Liu, Q., Crabbe, M. J. C., & Qu, W. (2022а). Spatial-temporal distribution, cancer risk, and disease burden attributed to the dietary dioxins exposure of Chinese residents. Science of The Total Environment, 832, 154851. https://doi.org/10.1016/j.scit....
Zhu, L., Wang, Y., Jiang, L., Lai, L., Ding, J., Liu, N., ... & Rimmington, G. M. (2015). Effects of residual hydrocarbons on the reed community after 10 years of oil extraction and the effectiveness of different biological indicators for the long-term risk assessments. Ecological Indicators, 48, 235–243. https://doi.org/10.1016/j.ecol....
Zouboulis, A. I., Moussas, P. A., & Nriagu, E. C. J. O. (2011). Groundwater and Soil Pollution: Bioremediation. Encyclopedia of Environmental Health, 1037–1044.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.