Physicochemical Characteristics of Effluent Water from African Catfish (Clarias Gariepinus) Tanks Fed Fermented Plant-Based Diets
 
More details
Hide details
1
Department of Agriculture, Agribusiness, and Environmental Sciences, Bishop Stuart University, Mbarara, Uganda
 
2
Faculty of Agriculture and Environmental Sciences, Mountains of the Moon University, Fort Portal, Uganda
 
 
Submission date: 2026-01-05
 
 
Acceptance date: 2026-02-11
 
 
Publication date: 2025-03-30
 
 
Corresponding author
Bruce Robin Nyamweha   

robinbrucenyamweha@gmail.com
 
 
Trends in Ecological and Indoor Environmental Engineering, 2026;4(1):60-69
 
KEYWORDS
ABSTRACT
Background:
Aquaculture intensification generates nitrogenous and phosphorus-rich effluents that threaten aquatic ecosystems. Fermented plant-based feeds are increasingly used to enhance nutrient digestibility and protein availability, yet their impact on effluent water quality remains poorly understood. Understanding how substrates such as banana, jackfruit seeds, and sweet potato influence ammonia, nitrite, BOD, and phosphates is critical for developing sustainable feeding strategies and minimizing environmental pollution in intensive African catfish (Clarias gariepinus) culture.

Objectives:
This study aimed to evaluate the effects of solid-state fermented ripe banana, jackfruit seeds, and sweet potato tuber feeds on effluent water quality in African catfish (Clarias gariepinus), focusing on ammonia, nitrites, phosphates, BOD, copper, EC, and microbial composition to identify environmentally safer feed options.

Methods:
African catfish (Clarias gariepinus) fingerlings were stocked in 50 L glass aquaria and fed either fermented ripe banana, jackfruit seeds, sweet potato tubers, or commercial feed as control. Each treatment was triplicated in a completely randomized design. Effluent water was sampled weekly for four weeks to measure total ammonia nitrogen (TAN), nitrites, phosphates, biochemical oxygen demand (BOD₅), copper concentration, electrical conductivity (EC), pH, and microbial composition. TAN and nitrites were determined using colorimetric HS aqua test kits, phosphates and copper via Palin 7100 photometer, BOD₅ with a magnetic stir BOD system, and microbial counts on nutrient agar. Statistical differences were assessed using Kruskal-Wallis and Dunn's post hoc tests (p < 0.05).

Results:
Effluent water from tanks fed fermented banana and sweet potato exhibited lower total ammonia nitrogen (0.2–0.3 mg L⁻¹) and nitrites (0.01–0.12 mg L⁻¹) compared to jackfruit seeds (TAN 1.3 p < 0.05 mg L⁻¹, nitrites 0.75 p < 0.05 mg L⁻¹) and commercial feed (TAN 2.7 mg L⁻¹, nitrites 0 mg L⁻¹). Phosphate concentrations and biochemical oxygen demand (BOD₅) exceeded regulatory limits in all treatments except partial reduction in sweet potato tanks. Copper concentrations and electrical conductivity remained below permissible limits across all feeds. Microbial analysis revealed dominance of Bacillus and Lactobacillus species, with highest Bacillus counts in jackfruit seed tanks and Lactobacillus in banana tanks. Kruskal-Wallis tests confirmed significant differences (p < 0.05) among treatments for TAN, nitrites, phosphates, BOD₅, copper, EC, and microbial counts.

Conclusion:
The study demonstrated the potential of specific fermented plant-based feed ingredients to mitigate nitrogen pollution in aquaculture systems. In particular, the inclusion of fermented ripe banana and sweet potato tubers in fish diets was shown to reduce ammonia and nitrite concentrations in culture water and effluent. However, high BOD and phosphate persisted, revealing a knowledge gap on nutrient release and effluent dynamics, guiding future sustainable feed research.
REFERENCES (47)
1.
Afrin, N., Jolly, S. N., & Shilpi, R. Y. (2019). Bacteriological study of some common dried spices and nuts of Bangladesh. Bangladesh Journal of Botany, 48(3), 595–601. https://doi.org/10.3329/bjb.v4....
 
2.
Ahmed, S. R., Hoseinifar, S. H., Van Doan, H., Rossi, W., Davies, S., Goda, A. M., & El-Haroun, E. (2025). Implications of Fermented Plant Protein Ingredients: A Critical Review of Nutrition, Physiology and Growth Related Aspects. Annals of Animal Science, 25(4), 1345–1360. https://doi.org/10.2478/aoas-2....
 
3.
Alvarado, J. L., Tacon, A. G. J., & Basurco, B. (1997). Aquafeeds and the environment. Feeding tomorrow’s fish, 275, 289.
 
4.
Boyd, C. E. (2018). Ammonia nitrogen dynamics in aquaculture. Global Aquaculture Advocate, 603, 499–517.
 
5.
Davison, J. E. (2019). Ammonia, lactate and blood gases–A user's guide. Paediatrics and Child Health, 29(3), 142–145. https://doi.org/10.1016/j.paed....
 
6.
Duliński, R., Stodolak, B., Byczyński, Ł., Poreda, A., Starzyńska-Janiszewska, A., & Żyła, K. (2017). Fermentacija na čvrstoj podlozi smanjuje maseni udjel fitinske kiseline, poboljšava svojstva mioinozitol fosfata i povećava iskoristivost mineralnih tvari iz lanene pogače. Food Technology and Biotechnology, 55(3), 413–419. https://doi.org/10.17113/ftb.5....
 
7.
Durborow, R. M., Crosby, D. M., & Brunson, M. W. (1997). Nitrite in fish ponds (Vol. 462). Stoneville, MS: Southern Regional Aquaculture Center. https://extension.rwfm.tamu.ed....
 
8.
El-Erian, M. A., Ibrahim, M. S., Salem, S. M., Mohammady, E. Y., El-Haroun, E. R., & Hassaan, M. S. (2023). Evaluation of different copper sources in Nile tilapia diets: growth, body indices, hematological assay, plasma metabolites, immune, anti-oxidative ability, and intestinal morphometric measurements. Biological Trace Element Research, 201(10), 4900–4911. https://doi.org/10.1007/s12011....
 
9.
Fanani, N. Z., & Fata, A. (2022, November). Monitoring and controlling overfeeding ammonia in smart lobster ponds based on Internet of Things technology. In 2022 International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT) (pp. 274–279). IEEE. https://doi.org/10.1109/ICEECI....
 
10.
Feng, Y., Cai, H., Liu, X., Zhang, C., Yang, Y., & Wen, M. (2024). Effects of fermented sweet potato residue on growth performance, immune organ morphology, antioxidant capacity and nonspecific immunity in common carp (Cyprinus carpio). Aquaculture Reports, 36, 102153. https://doi.org/10.1016/j.aqre....
 
11.
González-Gaya, B., García-Bueno, N., Buelow, E., Marin, A., & Rico, A. (2022). Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea. Science of the Total Environment, 806, 151190. https://doi.org/10.1016/j.scit....
 
12.
Halim, M. A., Aziz, D., Arshad, A., Wong, N. L. W., Karim, M. M., Syukri Ismail, M. F., & Rahi, M. L. (2025). Effects of C/N Ratio for Bi‐Culture of Litopenaeus vannamei (Boone, 1931) and Macrobrachium rosenbergii (de Man, 1879) in a Molasses Based Biofloc System. Aquaculture, Fish and Fisheries, 5(1), e70032. https://doi.org/10.1002/aff2.7....
 
13.
Hambalia, N., AAMY, N., & WNFAJ S, A. M. (2024). An In-depth review of the critical water analysis parameter and water quality Management Technology in Cage Aquaculture within Malaysian Coastal Regions. Jurnal Kejuruteraan, 36(3), 861–875.
 
14.
Hildebrand, M. C., Hentrich, N., & Palm, H. W. (2024). The role of light in the rearing of Clarias gariepinus larvae: Effects on behaviour, growth and survival. Aquaculture Reports, 39, 102420. https://doi.org/10.1016/j.aqre....
 
15.
Hossain, M. S., Ali, S., Hossain, M., Uddin, S. Z., Moniruzzaman, M., Islam, M. R., ... & Mahmud, Z. H. (2021). ESBL producing Escherichia coli in faecal sludge treatment plants: an invisible threat to public health in Rohingya camps, cox's bazar, Bangladesh. Frontiers in Public Health, 9, 783019. https://doi.org/10.3389/fpubh.....
 
16.
Hoy, M. K., & Goldman, J. D. (2023). Potassium intake of the US population: What We Eat in America, NHANES 2009–2010. In: FSRG Dietary Data Briefs. United States Department of Agriculture (USDA), Beltsville (MD); 2010. PMID: 36913512.
 
18.
Intharathat, B., Ponza, P., & Karaket, T. (2024). Feasibility of molasses-fermented banana peel as a protein source in practical diet for hybrid tilapia (Oreochromis spp.): effect on growth and feed efficiency. Acta Scientiarum. Animal Sciences, 46, e68154. https://doi.org/10.4025/actasc....
 
19.
Kroupova, H., Machova, J., & Svobodova, Z. (2005). Nitrite influence on fish: a review. Veterinarni Medicina-Praha-, 50(11), 461. https://doi.org/10.17221/5650-....
 
20.
Kubiriza, G. K., Zalwango, J., Semwanga, N. M., Nantege, D., Kazibwe, V. A., Odong, R., ... & Ólafur, S. (2024). Quality attributes of fish feeds and their potential effects on the aquatic ecosystem and aquaculture sustainability in East Africa. Journal of Applied Aquaculture, 36(3), 642–665. https://doi.org/10.1080/104544....
 
21.
Liu, W., Zhang, M., Xiong, X. A., He, C., Liu, J., & He, P. (2025). Macroalga Ulva prolifera OF Müller: an efficient biofilter for nitrogen-enriched aquaculture effluents. Frontiers in Marine Science, 12, 1654677. https://doi.org/10.3389/fmars.....
 
22.
Meng, L., Li, S., Liu, G., Fan, X., Qiao, Y., Zhang, A., ... & Feng, Z. (2021). The nutrient requirements of Lactobacillus acidophilus LA-5 and their application to fermented milk. Journal of Dairy Science, 104(1), 138–150. https://doi.org/10.3168/jds.20....
 
23.
Mustapha, M., & Akinshola, F. (2016). Ammonia concentrations in different aquaculture holding tanks. West African Journal of Applied Ecology, 24(1), 43–51.
 
24.
Nandi, S. K., Sarkar, S., Aunkor, M. T. H., Kari, Z. A., Dey, T., Van Doan, H., ... & Kabir, M. A. (2025). Applications of solid-state fermented (SSF) diets to improve the growth, organ health, immunity and disease resistance through modulating the transcriptomics and proteomics profile in fish and shrimp. AIMS Microbiology, 11(3), 699. https://doi.org/10.3934/microb....
 
25.
Nathanailides, C., Kolygas, M., Tsoumani, M., Gouva, E., Mavraganis, T., & Karayanni, H. (2023). Addressing phosphorus waste in open flow freshwater fish farms: Challenges and solutions. Fishes, 8(9), 442. https://doi.org/10.3390/fishes....
 
26.
National Environment Management Authority. (2020). The National Environment (Standards for Discharge of Effluent into Water or Land) Regulations, 2020. Statutory Instruments Supplement to The Uganda Gazette, No. 85, Vol. CXIII (21 December 2020). Government of Uganda. https://www.nema.go.ug/en/wp-c....
 
27.
Ndyomugyenyi, E. K., & Ebong, J. (2016). Nutritional assessment of soaked-boiled-fermented Jackfruit (Artocarpus heterophyllus) seed meal for broiler chickens. Livestock Research for Rural Development, 28(9), 2016.
 
28.
Neves, N. O. D. S., De Dea Lindner, J., Stockhausen, L., Delziovo, F. R., Bender, M., Serzedello, L., ... & Perez Fabregat, T. E. H. (2024). Fermentation of plant-based feeds with Lactobacillus acidophilus improves the survival and Intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a Biofloc System. Animals, 14(2), 332. https://doi.org/10.3390/ani140....
 
29.
Nyamweha, B. R., Muhangi, C., Nampwera, L., Ssekyanzi, A., Wacal, C., Kaingo, J., ... & Katuromunda, S. (2025). Producing Bacillus from the Ripe Bananas, Jackfruit Seeds and Sweet Potato Tubers by Solid Fermentation and its Effect on the Products' Biochemical Properties. Trends in Ecological and Indoor Environmental Engineering, 3(2), 27–36. https://doi.org/10.62622/TEIEE....
 
30.
Ogbonna, J., & Chinomso, A. (2010). Determination of the concentration of ammonia that could have lethal effect on fish pond. Journal of Engineering and Applied Sciences (Asian Research Publishing Network), 5, 1–5.
 
31.
Pandav, P. V., Ahire, R. S., Patil, S. R., & Pawar, S. B. (2021). Process Development for High Density Cultivation Yield for Bacillus Subtilis. International Journal of Recent Advances in Multidisciplinary Topics, 2(7), 335–339.
 
32.
Park, S. M., & Rhee, M. S. (2024). Prevalence and phylogenetic traits of nitrite-producing bacteria in raw ingredients and processed baby foods: Potential sources of foodborne infant methemoglobinemia. Food Research International, 178, 113966. https://doi.org/10.1016/j.food....
 
33.
Rajczyk, M. J. (1993). Fermentation of food industry wastewater. Water Research, 27(7), 1257–1262. https://doi.org/10.1016/0043-1....
 
34.
Raza, B., Ramzan, M. N., & Yang, W. (2025). A review: Improving aquaculture rearing water quality by removal of nutrients using microalgae, challenges and future prospects. Aquaculture, 598, 741959. https://doi.org/10.1016/j.aqua....
 
35.
San Diego-McGlone, M. L., Yniguez, A. T., Benico, G., Lum, W. M., Hii, K. S., Leong, S. C. Y., ... & Lim, P. T. (2024). Fish kills related to harmful algal bloom events in Southeast Asia. Sustainability, 16(23), 10521. https://doi.org/10.3390/su1623....
 
36.
Silva, U. L., Falcon, D. R., Pessôa, M. N. D. C., & Correia, E. D. S. (2017). Carbon sources and C: N ratios on water quality for Nile tilapia farming in biofloc system. Revista Caatinga, 30, 1017–1027. https://doi.org/10.1590/1983-2....
 
37.
Simončič, A., Sušin, J., Šinkovec, M., Leskovšek, R., Čuš, F., Žnidaršič Pongrac, V., & Baša Česnik, H. (2017). Twelve-year investigation of copper soil concentrations shows that vineyards are at risk. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 67(5), 381–394. https://doi.org/10.1080/090647....
 
38.
Sriyasak, P., Suwanpakdee, S., Chumnanka, N., & Pimolrat, P. (2022). Suitable Carbon Sources and C/N Ratio for Biofloc Production. Recent Science and Technology, 14(1), 117–127. https://li01.tci-thaijo.org/in....
 
39.
Sugiura, S. H. (2018). Phosphorus, aquaculture, and the environment. Reviews in Fisheries Science & Aquaculture, 26(4), 515–521. https://doi.org/10.1080/233082....
 
40.
Sun, Z., Hu, X., Xu, Y., Wen, G., Su, H., Pan, Z., & Cao, Y. (2024). Purification Effect of Fish–Algae Coupling on Nitrogen and Phosphorus in Shrimp Aquaculture Effluent. Fishes, 9(12), 490. https://doi.org/10.3390/fishes....
 
41.
Symeonidou, S., & Mente, E. (2024). Water consumption and the water footprint in aquaculture: a review. Water, 16(23), 3376. https://doi.org/10.3390/w16233....
 
42.
United States Environmental Protection Agency. (2025). Indicators: Conductivity. https://www.epa.gov/national-a....
 
43.
Vajargah, M. F., & Yalsuyi, A. M. (2022). An overview of ammonia poisoning in aquariums. Journal ISSN, 2276. https://doi.org/10.37871/jbres....
 
44.
Vera, L., Aguilar Galarza, B., Reinoso, S., Bohórquez‐Cruz, M., Sonnenholzner, S., & Argüello‐Guevara, W. (2023). Determination of acute toxicity of unionized ammonia in juvenile longfin yellowtail (Seriola rivoliana). Journal of the World Aquaculture Society, 54(5), 1110–1120. https://doi.org/10.1111/jwas.1....
 
45.
Wang, J., Wu, R., Wang, J., Guo, J., Zhang, Y., Shi, N., ... & Yang, Z. (2025). Investigation of feeding effects and environmental impact of fish-feed quality: Evidence from crucian carp feeding experiments. Fishes, 10(2), 50. https://doi.org/10.3390/fishes....
 
46.
White, P. (2013). Environmental consequences of poor feed quality and feed management. FAO Fisheries and Aquaculture Technical Paper, 583, 553–564.
 
47.
Zhang, K., Zhang, F., Li, Y., Du, A., Wang, Q., Liu, Z., ... & Dong, S. (2025). Asymbiotic biological nitrogen fixation makes a great contribution to nitrogen balance in unfertilized alpine grasslands across the Qinghai-Tibet Plateau. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.....
 
Journals System - logo
Scroll to top